ucaslcl commited on
Commit
8b78611
·
verified ·
1 Parent(s): 70d1724

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -56
app.py CHANGED
@@ -1,63 +1,122 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import spaces
3
+ from transformers import AutoModel, AutoTokenizer
4
 
5
+ tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
6
+ model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
7
+ model = model.eval().cuda()
 
8
 
9
+ @spaces.GPU
10
+ def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None, render=True):
11
+ if task == "Plain Text OCR":
12
+ res = model.chat(tokenizer, image, ocr_type='ocr')
13
+ elif task == "Format Text OCR":
14
+ res = model.chat(tokenizer, image, ocr_type='format')
15
+ elif task == "Fine-grained OCR (Box)":
16
+ res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box)
17
+ elif task == "Fine-grained OCR (Color)":
18
+ res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color)
19
+ elif task == "Multi-crop OCR":
20
+ res = model.chat_crop(tokenizer, image_file=image)
21
+ elif task == "Render Formatted OCR":
22
+ res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file='./demo.html')
23
+ with open('./demo.html', 'r') as f:
24
+ html_content = f.read()
25
+ return res, html_content
26
+
27
+ return res, None
28
 
29
+ def update_inputs(task):
30
+ if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
31
+ return [gr.update(visible=False)] * 4
32
+ elif task == "Fine-grained OCR (Box)":
33
+ return [
34
+ gr.update(visible=True, choices=["ocr", "format"]),
35
+ gr.update(visible=True),
36
+ gr.update(visible=False),
37
+ gr.update(visible=False)
38
+ ]
39
+ elif task == "Fine-grained OCR (Color)":
40
+ return [
41
+ gr.update(visible=True, choices=["ocr", "format"]),
42
+ gr.update(visible=False),
43
+ gr.update(visible=True, choices=["red", "green", "blue"]),
44
+ gr.update(visible=False)
45
+ ]
46
+ elif task == "Render Formatted OCR":
47
+ return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
48
+
49
+ def ocr_demo(image, task, ocr_type, ocr_box, ocr_color, render):
50
+ res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color, render)
51
+ if html_content:
52
+ return res, html_content
53
+ return res, None
54
 
55
+ with gr.Blocks() as demo:
56
+ gr.Markdown()
57
+ gr.Markdown()
58
+ gr.Markdown("""
59
+ # "General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model"
60
+
61
+ "🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!"
62
+
63
+ ### Repo
64
+ - **Hugging Face**: [ucaslcl/GOT-OCR2_0](https://huggingface.co/ucaslcl/GOT-OCR2_0)
65
+ - **GitHub**: [ucaslcl/GOT-OCR2_0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/)
66
+ - **Paper**: [AriXiv](https://arxiv.org/abs/2409.01704)
67
+ """)
68
+
69
+ with gr.Row():
70
+ with gr.Column():
71
+ image_input = gr.Image(type="filepath", label="upload your image")
72
+ task_dropdown = gr.Dropdown(
73
+ choices=[
74
+ "plain text OCR",
75
+ "format text OCR",
76
+ "fine-grained OCR (Box)",
77
+ "fine-grained OCR (Color)",
78
+ "multi-crop OCR",
79
+ "render Formatted OCR"
80
+ ],
81
+ label="Select Task",
82
+ value="Plain Text OCR"
83
+ )
84
+ ocr_type_dropdown = gr.Dropdown(
85
+ choices=["ocr", "format"],
86
+ label="OCR Type",
87
+ visible=False
88
+ )
89
+ ocr_box_input = gr.Textbox(
90
+ label="OCR Box (x1,y1,x2,y2)",
91
+ placeholder="e.g., 100,100,200,200",
92
+ visible=False
93
+ )
94
+ ocr_color_dropdown = gr.Dropdown(
95
+ choices=["red", "green", "blue"],
96
+ label="OCR Color",
97
+ visible=False
98
+ )
99
+ render_checkbox = gr.Checkbox(
100
+ label="Render Result",
101
+ visible=False
102
+ )
103
+ submit_button = gr.Button("Process")
104
+
105
+ with gr.Column():
106
+ output_text = gr.Textbox(label="OCR Result")
107
+ output_html = gr.HTML(label="Rendered HTML Output")
108
+
109
 
110
+ task_dropdown.change(
111
+ update_inputs,
112
+ inputs=[task_dropdown],
113
+ outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
114
+ )
115
+
116
+ submit_button.click(
117
+ ocr_demo,
118
+ inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
119
+ outputs=[output_text, output_html]
120
+ )
121
 
122
+ demo.launch()