Spaces:
Runtime error
Runtime error
arithescientist
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import sqlparse
|
|
7 |
import logging
|
8 |
|
9 |
# Import necessary modules from transformers and langchain
|
|
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
11 |
from langchain.llms import HuggingFacePipeline
|
12 |
|
@@ -24,14 +25,20 @@ if hf_token is None:
|
|
24 |
st.error("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN secret in your Space.")
|
25 |
st.stop()
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Load the tokenizer and model with the token
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_token)
|
29 |
model = AutoModelForCausalLM.from_pretrained(
|
30 |
model_id,
|
31 |
use_auth_token=hf_token,
|
32 |
-
device_map='
|
33 |
-
torch_dtype=
|
34 |
-
)
|
35 |
|
36 |
# Create the text-generation pipeline with appropriate parameters
|
37 |
pipe = pipeline(
|
@@ -43,13 +50,13 @@ pipe = pipeline(
|
|
43 |
repetition_penalty=1.1,
|
44 |
do_sample=True, # Use sampling to introduce some randomness
|
45 |
eos_token_id=tokenizer.eos_token_id,
|
46 |
-
pad_token_id=tokenizer.eos_token_id
|
|
|
47 |
)
|
48 |
|
49 |
# Wrap the pipeline with HuggingFacePipeline for use in LangChain
|
50 |
llm = HuggingFacePipeline(pipeline=pipe)
|
51 |
|
52 |
-
# ... rest of your code ...
|
53 |
|
54 |
|
55 |
# Step 1: Upload CSV data file (or use default)
|
|
|
7 |
import logging
|
8 |
|
9 |
# Import necessary modules from transformers and langchain
|
10 |
+
import torch
|
11 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
12 |
from langchain.llms import HuggingFacePipeline
|
13 |
|
|
|
25 |
st.error("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN secret in your Space.")
|
26 |
st.stop()
|
27 |
|
28 |
+
# Import torch
|
29 |
+
import torch
|
30 |
+
|
31 |
+
# Set device
|
32 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
33 |
+
|
34 |
# Load the tokenizer and model with the token
|
35 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_token)
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
37 |
model_id,
|
38 |
use_auth_token=hf_token,
|
39 |
+
device_map=None, # We'll set the device manually
|
40 |
+
torch_dtype=torch.float32 # Use float32 to avoid half-precision issues
|
41 |
+
).to(device)
|
42 |
|
43 |
# Create the text-generation pipeline with appropriate parameters
|
44 |
pipe = pipeline(
|
|
|
50 |
repetition_penalty=1.1,
|
51 |
do_sample=True, # Use sampling to introduce some randomness
|
52 |
eos_token_id=tokenizer.eos_token_id,
|
53 |
+
pad_token_id=tokenizer.eos_token_id,
|
54 |
+
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
|
55 |
)
|
56 |
|
57 |
# Wrap the pipeline with HuggingFacePipeline for use in LangChain
|
58 |
llm = HuggingFacePipeline(pipeline=pipe)
|
59 |
|
|
|
60 |
|
61 |
|
62 |
# Step 1: Upload CSV data file (or use default)
|