arithescientist commited on
Commit
110bab7
·
verified ·
1 Parent(s): 1746d1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -4
app.py CHANGED
@@ -12,14 +12,26 @@ from langchain.llms import HuggingFacePipeline
12
 
13
  # Initialize conversation history
14
  if 'history' not in st.session_state:
15
- st.session_state.history = []
16
 
17
  # Set up the Llama-2-7b-chat-hf model
18
  model_id = "meta-llama/Llama-2-7b-chat-hf"
19
 
20
- # Load the tokenizer and model
21
- tokenizer = AutoTokenizer.from_pretrained(model_id)
22
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype='auto') # Adjust device_map and torch_dtype as needed
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  # Create the text-generation pipeline with appropriate parameters
25
  pipe = pipeline(
@@ -37,6 +49,9 @@ pipe = pipeline(
37
  # Wrap the pipeline with HuggingFacePipeline for use in LangChain
38
  llm = HuggingFacePipeline(pipeline=pipe)
39
 
 
 
 
40
  # Step 1: Upload CSV data file (or use default)
41
  st.title("Natural Language to SQL Query App with Enhanced Insights")
42
  st.write("Upload a CSV file to get started, or use the default dataset.")
 
12
 
13
  # Initialize conversation history
14
  if 'history' not in st.session_state:
15
+ st.session_state['history'] = []
16
 
17
  # Set up the Llama-2-7b-chat-hf model
18
  model_id = "meta-llama/Llama-2-7b-chat-hf"
19
 
20
+ # Get your Hugging Face token (it's stored as a secret in your Space)
21
+ hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
22
+
23
+ if hf_token is None:
24
+ st.error("Hugging Face API token is not set. Please set the HUGGINGFACEHUB_API_TOKEN secret in your Space.")
25
+ st.stop()
26
+
27
+ # Load the tokenizer and model with the token
28
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_token)
29
+ model = AutoModelForCausalLM.from_pretrained(
30
+ model_id,
31
+ use_auth_token=hf_token,
32
+ device_map='auto',
33
+ torch_dtype='auto' # Adjust based on your environment
34
+ )
35
 
36
  # Create the text-generation pipeline with appropriate parameters
37
  pipe = pipeline(
 
49
  # Wrap the pipeline with HuggingFacePipeline for use in LangChain
50
  llm = HuggingFacePipeline(pipeline=pipe)
51
 
52
+ # ... rest of your code ...
53
+
54
+
55
  # Step 1: Upload CSV data file (or use default)
56
  st.title("Natural Language to SQL Query App with Enhanced Insights")
57
  st.write("Upload a CSV file to get started, or use the default dataset.")