Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,45 +2,40 @@ import os
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
-
from langchain import
|
6 |
-
from transformers import LlamaForCausalLM, LlamaTokenizer
|
7 |
-
import torch
|
8 |
import sqlparse
|
9 |
import logging
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
# Initialize conversation history
|
13 |
if 'history' not in st.session_state:
|
14 |
st.session_state.history = []
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
-
if llama_tokenizer and llama_model:
|
39 |
-
inputs = llama_tokenizer(prompt, return_tensors="pt").to(device)
|
40 |
-
outputs = llama_model.generate(inputs.input_ids, max_length=200)
|
41 |
-
return llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
-
else:
|
43 |
-
return "LLaMA model is not available."
|
44 |
|
45 |
# Step 1: Upload CSV data file (or use default)
|
46 |
st.title("Natural Language to SQL Query App with Enhanced Insights")
|
@@ -66,10 +61,14 @@ data.to_sql(table_name, conn, index=False, if_exists='replace')
|
|
66 |
valid_columns = list(data.columns)
|
67 |
st.write(f"Valid columns: {valid_columns}")
|
68 |
|
69 |
-
# Step 3: Set up the LLM Chains
|
70 |
-
# SQL Generation Chain
|
71 |
sql_template = """
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
Ensure that:
|
75 |
|
@@ -87,24 +86,46 @@ Table name: {table_name}
|
|
87 |
Valid columns: {columns}
|
88 |
|
89 |
SQL Query:
|
|
|
90 |
"""
|
91 |
sql_prompt = PromptTemplate(template=sql_template, input_variables=['question', 'table_name', 'columns'])
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
def generate_insights_llama(question, data_summary):
|
97 |
-
insights_template = f"""
|
98 |
-
You are an expert data scientist. Based on the user's question and the dataset summary provided below, generate concise data insights and actionable recommendations.
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
# Optional: Clean up function to remove incorrect COLLATE NOCASE usage
|
110 |
def clean_sql_query(query):
|
@@ -132,16 +153,19 @@ def clean_sql_query(query):
|
|
132 |
def classify_query(question):
|
133 |
"""Classify the user query as either 'SQL' or 'INSIGHTS'."""
|
134 |
classification_template = """
|
135 |
-
|
|
|
|
|
136 |
|
137 |
-
|
138 |
|
139 |
-
|
140 |
|
141 |
-
|
142 |
-
|
|
|
143 |
classification_prompt = PromptTemplate(template=classification_template, input_variables=['question'])
|
144 |
-
classification_chain = LLMChain(llm=
|
145 |
category = classification_chain.run({'question': question}).strip().upper()
|
146 |
if category.startswith('SQL'):
|
147 |
return 'SQL'
|
@@ -151,7 +175,22 @@ def classify_query(question):
|
|
151 |
# Function to generate dataset summary
|
152 |
def generate_dataset_summary(data):
|
153 |
"""Generate a summary of the dataset for general insights."""
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
return summary
|
156 |
|
157 |
# Define the callback function
|
@@ -179,9 +218,21 @@ def process_input():
|
|
179 |
}).strip()
|
180 |
|
181 |
if generated_sql.upper() == "NO_SQL":
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
else:
|
|
|
185 |
cleaned_sql = clean_sql_query(generated_sql)
|
186 |
logging.info(f"Generated SQL Query: {cleaned_sql}")
|
187 |
|
@@ -193,17 +244,34 @@ def process_input():
|
|
193 |
assistant_response = "The query returned no results. Please try a different question."
|
194 |
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
195 |
else:
|
196 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
st.session_state.history.append({"role": "assistant", "content": result})
|
198 |
-
|
199 |
except Exception as e:
|
200 |
logging.error(f"An error occurred during SQL execution: {e}")
|
201 |
assistant_response = f"Error executing SQL query: {e}"
|
202 |
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
203 |
else: # INSIGHTS category
|
|
|
204 |
dataset_summary = generate_dataset_summary(data)
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
except Exception as e:
|
209 |
logging.error(f"An error occurred: {e}")
|
@@ -213,7 +281,6 @@ def process_input():
|
|
213 |
# Reset the user_input in session state
|
214 |
st.session_state['user_input'] = ''
|
215 |
|
216 |
-
|
217 |
# Display the conversation history
|
218 |
for message in st.session_state.history:
|
219 |
if message['role'] == 'user':
|
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import sqlite3
|
5 |
+
from langchain import LLMChain, PromptTemplate
|
|
|
|
|
6 |
import sqlparse
|
7 |
import logging
|
8 |
|
9 |
+
# Import necessary modules from transformers and langchain
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
11 |
+
from langchain.llms import HuggingFacePipeline
|
12 |
|
13 |
# Initialize conversation history
|
14 |
if 'history' not in st.session_state:
|
15 |
st.session_state.history = []
|
16 |
|
17 |
+
# Set up the Llama-2-7b-chat-hf model
|
18 |
+
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
19 |
+
|
20 |
+
# Load the tokenizer and model
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype='auto') # Adjust device_map and torch_dtype as needed
|
23 |
+
|
24 |
+
# Create the text-generation pipeline with appropriate parameters
|
25 |
+
pipe = pipeline(
|
26 |
+
"text-generation",
|
27 |
+
model=model,
|
28 |
+
tokenizer=tokenizer,
|
29 |
+
max_new_tokens=512,
|
30 |
+
temperature=0.1,
|
31 |
+
repetition_penalty=1.1,
|
32 |
+
do_sample=True, # Use sampling to introduce some randomness
|
33 |
+
eos_token_id=tokenizer.eos_token_id,
|
34 |
+
pad_token_id=tokenizer.eos_token_id
|
35 |
+
)
|
36 |
+
|
37 |
+
# Wrap the pipeline with HuggingFacePipeline for use in LangChain
|
38 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Step 1: Upload CSV data file (or use default)
|
41 |
st.title("Natural Language to SQL Query App with Enhanced Insights")
|
|
|
61 |
valid_columns = list(data.columns)
|
62 |
st.write(f"Valid columns: {valid_columns}")
|
63 |
|
64 |
+
# Step 3: Set up the LLM Chains with adjusted prompts
|
65 |
+
# SQL Generation Chain
|
66 |
sql_template = """
|
67 |
+
[INST] <<SYS>>
|
68 |
+
You are an expert data scientist.
|
69 |
+
<</SYS>>
|
70 |
+
|
71 |
+
Given a natural language question, the name of the table, and a list of valid columns, generate a valid SQL query that answers the question.
|
72 |
|
73 |
Ensure that:
|
74 |
|
|
|
86 |
Valid columns: {columns}
|
87 |
|
88 |
SQL Query:
|
89 |
+
[/INST]
|
90 |
"""
|
91 |
sql_prompt = PromptTemplate(template=sql_template, input_variables=['question', 'table_name', 'columns'])
|
92 |
+
sql_generation_chain = LLMChain(llm=llm, prompt=sql_prompt)
|
93 |
+
|
94 |
+
# Insights Generation Chain
|
95 |
+
insights_template = """
|
96 |
+
[INST] <<SYS>>
|
97 |
+
You are an expert data scientist.
|
98 |
+
<</SYS>>
|
99 |
|
100 |
+
Based on the user's question and the SQL query result provided below, generate a concise analysis that includes key data insights and actionable recommendations. Limit the response to a maximum of 150 words.
|
|
|
|
|
|
|
101 |
|
102 |
+
User's Question: {question}
|
103 |
+
|
104 |
+
SQL Query Result:
|
105 |
+
{result}
|
106 |
+
|
107 |
+
Concise Analysis (max 200 words):
|
108 |
+
[/INST]
|
109 |
+
"""
|
110 |
+
insights_prompt = PromptTemplate(template=insights_template, input_variables=['question', 'result'])
|
111 |
+
insights_chain = LLMChain(llm=llm, prompt=insights_prompt)
|
112 |
|
113 |
+
# General Insights and Recommendations Chain
|
114 |
+
general_insights_template = """
|
115 |
+
[INST] <<SYS>>
|
116 |
+
You are an expert data scientist.
|
117 |
+
<</SYS>>
|
118 |
|
119 |
+
Based on the entire dataset provided below, generate a concise analysis with key insights and recommendations. Limit the response to 150 words.
|
120 |
+
|
121 |
+
Dataset Summary:
|
122 |
+
{dataset_summary}
|
123 |
+
|
124 |
+
Concise Analysis and Recommendations (max 150 words):
|
125 |
+
[/INST]
|
126 |
+
"""
|
127 |
+
general_insights_prompt = PromptTemplate(template=general_insights_template, input_variables=['dataset_summary'])
|
128 |
+
general_insights_chain = LLMChain(llm=llm, prompt=general_insights_prompt)
|
129 |
|
130 |
# Optional: Clean up function to remove incorrect COLLATE NOCASE usage
|
131 |
def clean_sql_query(query):
|
|
|
153 |
def classify_query(question):
|
154 |
"""Classify the user query as either 'SQL' or 'INSIGHTS'."""
|
155 |
classification_template = """
|
156 |
+
[INST] <<SYS>>
|
157 |
+
You are an AI assistant that classifies user queries into two categories: 'SQL' for specific data retrieval queries and 'INSIGHTS' for general analytical or recommendation queries.
|
158 |
+
<</SYS>>
|
159 |
|
160 |
+
Determine the appropriate category for the following user question.
|
161 |
|
162 |
+
Question: "{question}"
|
163 |
|
164 |
+
Category (SQL/INSIGHTS):
|
165 |
+
[/INST]
|
166 |
+
"""
|
167 |
classification_prompt = PromptTemplate(template=classification_template, input_variables=['question'])
|
168 |
+
classification_chain = LLMChain(llm=llm, prompt=classification_prompt)
|
169 |
category = classification_chain.run({'question': question}).strip().upper()
|
170 |
if category.startswith('SQL'):
|
171 |
return 'SQL'
|
|
|
175 |
# Function to generate dataset summary
|
176 |
def generate_dataset_summary(data):
|
177 |
"""Generate a summary of the dataset for general insights."""
|
178 |
+
summary_template = """
|
179 |
+
[INST] <<SYS>>
|
180 |
+
You are an expert data scientist.
|
181 |
+
<</SYS>>
|
182 |
+
|
183 |
+
Based on the dataset provided below, generate a concise summary that includes the number of records, number of columns, data types, and any notable features.
|
184 |
+
|
185 |
+
Dataset:
|
186 |
+
{data}
|
187 |
+
|
188 |
+
Dataset Summary:
|
189 |
+
[/INST]
|
190 |
+
"""
|
191 |
+
summary_prompt = PromptTemplate(template=summary_template, input_variables=['data'])
|
192 |
+
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
193 |
+
summary = summary_chain.run({'data': data.head().to_string(index=False)})
|
194 |
return summary
|
195 |
|
196 |
# Define the callback function
|
|
|
218 |
}).strip()
|
219 |
|
220 |
if generated_sql.upper() == "NO_SQL":
|
221 |
+
# Handle cases where no SQL should be generated
|
222 |
+
assistant_response = "Sure, let's discuss some general insights and recommendations based on the data."
|
223 |
+
|
224 |
+
# Generate dataset summary
|
225 |
+
dataset_summary = generate_dataset_summary(data)
|
226 |
+
|
227 |
+
# Generate general insights and recommendations
|
228 |
+
general_insights = general_insights_chain.run({
|
229 |
+
'dataset_summary': dataset_summary
|
230 |
+
})
|
231 |
+
|
232 |
+
# Append the assistant's insights to the history
|
233 |
+
st.session_state.history.append({"role": "assistant", "content": general_insights})
|
234 |
else:
|
235 |
+
# Clean the SQL query
|
236 |
cleaned_sql = clean_sql_query(generated_sql)
|
237 |
logging.info(f"Generated SQL Query: {cleaned_sql}")
|
238 |
|
|
|
244 |
assistant_response = "The query returned no results. Please try a different question."
|
245 |
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
246 |
else:
|
247 |
+
# Convert the result to a string for the insights prompt
|
248 |
+
result_str = result.head(10).to_string(index=False) # Limit to first 10 rows
|
249 |
+
|
250 |
+
# Generate insights and recommendations based on the query result
|
251 |
+
insights = insights_chain.run({
|
252 |
+
'question': user_prompt,
|
253 |
+
'result': result_str
|
254 |
+
})
|
255 |
+
|
256 |
+
# Append the assistant's insights to the history
|
257 |
+
st.session_state.history.append({"role": "assistant", "content": insights})
|
258 |
+
# Append the result DataFrame to the history
|
259 |
st.session_state.history.append({"role": "assistant", "content": result})
|
|
|
260 |
except Exception as e:
|
261 |
logging.error(f"An error occurred during SQL execution: {e}")
|
262 |
assistant_response = f"Error executing SQL query: {e}"
|
263 |
st.session_state.history.append({"role": "assistant", "content": assistant_response})
|
264 |
else: # INSIGHTS category
|
265 |
+
# Generate dataset summary
|
266 |
dataset_summary = generate_dataset_summary(data)
|
267 |
+
|
268 |
+
# Generate general insights and recommendations
|
269 |
+
general_insights = general_insights_chain.run({
|
270 |
+
'dataset_summary': dataset_summary
|
271 |
+
})
|
272 |
+
|
273 |
+
# Append the assistant's insights to the history
|
274 |
+
st.session_state.history.append({"role": "assistant", "content": general_insights})
|
275 |
|
276 |
except Exception as e:
|
277 |
logging.error(f"An error occurred: {e}")
|
|
|
281 |
# Reset the user_input in session state
|
282 |
st.session_state['user_input'] = ''
|
283 |
|
|
|
284 |
# Display the conversation history
|
285 |
for message in st.session_state.history:
|
286 |
if message['role'] == 'user':
|