Hindi_LLM_arena / app.py
archit11's picture
Create app.py
56fb754 verified
raw
history blame
6.03 kB
import os
from threading import Thread
from typing import Iterator, List, Tuple
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """\
# Zero GPU Model Comparison Arena
Compare two language models using Hugging Face's Zero GPU initiative.
Select two different models from the dropdowns and see how they perform on the same input.
"""
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MODEL_OPTIONS = [
"google/gemma-2b-it",
"mistralai/Mistral-7B-Instruct-v0.2",
"meta-llama/Llama-2-7b-chat-hf",
"tiiuae/falcon-7b-instruct"
]
models = {}
tokenizers = {}
for model_id in MODEL_OPTIONS:
tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
models[model_id] = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
load_in_8bit=True,
)
models[model_id].eval()
@spaces.GPU(duration=90)
def generate(
model_id: str,
message: str,
chat_history: List[Tuple[str, str]],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.7,
top_p: float = 0.95,
) -> Iterator[str]:
model = models[model_id]
tokenizer = tokenizers[model_id]
conversation = []
for user, assistant in chat_history:
conversation.extend([
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def compare_models(
model1_name: str,
model2_name: str,
message: str,
chat_history1: List[Tuple[str, str]],
chat_history2: List[Tuple[str, str]],
max_new_tokens: int,
temperature: float,
top_p: float,
) -> Tuple[str, str, List[Tuple[str, str]], List[Tuple[str, str]]]:
if model1_name == model2_name:
return "Error: Please select two different models.", "Error: Please select two different models.", chat_history1, chat_history2
output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p)))
output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p)))
chat_history1.append((message, output1))
chat_history2.append((message, output2))
log_results(model1_name, model2_name, message, output1, output2)
return output1, output2, chat_history1, chat_history2
def log_results(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None):
log_data = {
"question": question,
"model1": {"name": model1_name, "answer": answer1},
"model2": {"name": model2_name, "answer": answer2},
"winner": winner
}
# Here you would implement the actual logging logic, e.g., sending to a server or writing to a file
print("Logged:", log_data)
def vote_better(model1_name, model2_name, question, answer1, answer2, choice):
winner = model1_name if choice == "Model 1" else model2_name
log_results(model1_name, model2_name, question, answer1, answer2, winner)
return f"You voted that {winner} performs better. This has been logged."
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0])
chatbot1 = gr.Chatbot(label="Model 1 Output")
with gr.Column():
model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1])
chatbot2 = gr.Chatbot(label="Model 2 Output")
text_input = gr.Textbox(label="Input Text", lines=3)
with gr.Row():
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95)
compare_btn = gr.Button("Compare Models")
with gr.Row():
better1_btn = gr.Button("Model 1 is Better")
better2_btn = gr.Button("Model 2 is Better")
vote_output = gr.Textbox(label="Voting Result")
compare_btn.click(
compare_models,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p],
outputs=[chatbot1, chatbot2, chatbot1, chatbot2]
)
better1_btn.click(
vote_better,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)],
outputs=[vote_output]
)
better2_btn.click(
vote_better,
inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)],
outputs=[vote_output]
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()