File size: 6,027 Bytes
56fb754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
from threading import Thread
from typing import Iterator, List, Tuple

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

DESCRIPTION = """\
# Zero GPU Model Comparison Arena
Compare two language models using Hugging Face's Zero GPU initiative.
Select two different models from the dropdowns and see how they perform on the same input.
"""

MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

MODEL_OPTIONS = [
    "google/gemma-2b-it",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "meta-llama/Llama-2-7b-chat-hf",
    "tiiuae/falcon-7b-instruct"
]

models = {}
tokenizers = {}

for model_id in MODEL_OPTIONS:
    tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id)
    models[model_id] = AutoModelForCausalLM.from_pretrained(
        model_id,
        device_map="auto",
        load_in_8bit=True,
    )
    models[model_id].eval()

@spaces.GPU(duration=90)
def generate(
    model_id: str,
    message: str,
    chat_history: List[Tuple[str, str]],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.7,
    top_p: float = 0.95,
) -> Iterator[str]:
    model = models[model_id]
    tokenizer = tokenizers[model_id]

    conversation = []
    for user, assistant in chat_history:
        conversation.extend([
            {"role": "user", "content": user},
            {"role": "assistant", "content": assistant},
        ])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        temperature=temperature,
        num_beams=1,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

def compare_models(
    model1_name: str,
    model2_name: str,
    message: str,
    chat_history1: List[Tuple[str, str]],
    chat_history2: List[Tuple[str, str]],
    max_new_tokens: int,
    temperature: float,
    top_p: float,
) -> Tuple[str, str, List[Tuple[str, str]], List[Tuple[str, str]]]:
    if model1_name == model2_name:
        return "Error: Please select two different models.", "Error: Please select two different models.", chat_history1, chat_history2

    output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p)))
    output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p)))

    chat_history1.append((message, output1))
    chat_history2.append((message, output2))

    log_results(model1_name, model2_name, message, output1, output2)

    return output1, output2, chat_history1, chat_history2

def log_results(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None):
    log_data = {
        "question": question,
        "model1": {"name": model1_name, "answer": answer1},
        "model2": {"name": model2_name, "answer": answer2},
        "winner": winner
    }
    
    # Here you would implement the actual logging logic, e.g., sending to a server or writing to a file
    print("Logged:", log_data)

def vote_better(model1_name, model2_name, question, answer1, answer2, choice):
    winner = model1_name if choice == "Model 1" else model2_name
    log_results(model1_name, model2_name, question, answer1, answer2, winner)
    return f"You voted that {winner} performs better. This has been logged."

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    
    with gr.Row():
        with gr.Column():
            model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0])
            chatbot1 = gr.Chatbot(label="Model 1 Output")
        with gr.Column():
            model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1])
            chatbot2 = gr.Chatbot(label="Model 2 Output")
    
    text_input = gr.Textbox(label="Input Text", lines=3)
    
    with gr.Row():
        max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS)
        temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7)
        top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95)
    
    compare_btn = gr.Button("Compare Models")
    
    with gr.Row():
        better1_btn = gr.Button("Model 1 is Better")
        better2_btn = gr.Button("Model 2 is Better")

    vote_output = gr.Textbox(label="Voting Result")

    compare_btn.click(
        compare_models,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p],
        outputs=[chatbot1, chatbot2, chatbot1, chatbot2]
    )
    
    better1_btn.click(
        vote_better,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)],
        outputs=[vote_output]
    )
    
    better2_btn.click(
        vote_better,
        inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)],
        outputs=[vote_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=10).launch()