SabziAi / app.py
apaxray's picture
Update app.py
d508438 verified
raw
history blame
2 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# بارگذاری مدل و توکنایزر از Hugging Face
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf" # مدل Llama 2 (نسخه Chat)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto")
# تعریف تابع پاسخ‌دهی
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
# ساختن prompt از پیام‌های قبلی
context = f"{system_message}\n"
for user_message, bot_response in history:
context += f"User: {user_message}\nBot: {bot_response}\n"
context += f"User: {message}\nBot:"
# تولید پاسخ
inputs = tokenizer(context, return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("Bot:")[-1].strip() # استخراج پاسخ
yield response
# رابط کاربری Gradio
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(
value="You are an advanced and friendly assistant.",
label="System message",
),
gr.Slider(
minimum=10, maximum=1024, value=256, step=1, label="Max new tokens"
),
gr.Slider(
minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"
),
gr.Slider(
minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"
),
],
title="Advanced Chatbot with Llama 2",
description="A conversational AI based on Llama 2 fine-tuned for chat.",
)
if __name__ == "__main__":
demo.launch()