apaxray commited on
Commit
d508438
·
verified ·
1 Parent(s): dff7800

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -44
app.py CHANGED
@@ -1,64 +1,62 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
9
 
 
10
  def respond(
11
- message,
12
  history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
38
 
39
- response += token
40
- yield response
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
 
52
  gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
 
 
58
  ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
3
 
4
+ # بارگذاری مدل و توکنایزر از Hugging Face
5
+ MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf" # مدل Llama 2 (نسخه Chat)
6
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
7
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto")
8
 
9
+ # تعریف تابع پاسخ‌دهی
10
  def respond(
11
+ message: str,
12
  history: list[tuple[str, str]],
13
+ system_message: str,
14
+ max_tokens: int,
15
+ temperature: float,
16
+ top_p: float,
17
  ):
18
+ # ساختن prompt از پیام‌های قبلی
19
+ context = f"{system_message}\n"
20
+ for user_message, bot_response in history:
21
+ context += f"User: {user_message}\nBot: {bot_response}\n"
22
+ context += f"User: {message}\nBot:"
23
+
24
+ # تولید پاسخ
25
+ inputs = tokenizer(context, return_tensors="pt", padding=True, truncation=True)
26
+ outputs = model.generate(
27
+ inputs["input_ids"],
28
+ max_new_tokens=max_tokens,
 
 
 
 
 
29
  temperature=temperature,
30
  top_p=top_p,
31
+ pad_token_id=tokenizer.eos_token_id,
32
+ )
33
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
34
+ response = response.split("Bot:")[-1].strip() # استخراج پاسخ
35
 
36
+ yield response
 
37
 
38
 
39
+ # رابط کاربری Gradio
 
 
40
  demo = gr.ChatInterface(
41
+ fn=respond,
42
  additional_inputs=[
43
+ gr.Textbox(
44
+ value="You are an advanced and friendly assistant.",
45
+ label="System message",
46
+ ),
47
  gr.Slider(
48
+ minimum=10, maximum=1024, value=256, step=1, label="Max new tokens"
49
+ ),
50
+ gr.Slider(
51
+ minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"
52
+ ),
53
+ gr.Slider(
54
+ minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"
55
  ),
56
  ],
57
+ title="Advanced Chatbot with Llama 2",
58
+ description="A conversational AI based on Llama 2 fine-tuned for chat.",
59
  )
60
 
 
61
  if __name__ == "__main__":
62
  demo.launch()