Spaces:
Runtime error
guardrails-output-parser
This template uses guardrails-ai to validate LLM output.
The GuardrailsOutputParser
is set in chain.py
.
The default example protects against profanity.
Environment Setup
Set the OPENAI_API_KEY
environment variable to access the OpenAI models.
Usage
To use this package, you should first have the LangChain CLI installed:
pip install -U langchain-cli
To create a new LangChain project and install this as the only package, you can do:
langchain app new my-app --package guardrails-output-parser
If you want to add this to an existing project, you can just run:
langchain app add guardrails-output-parser
And add the following code to your server.py
file:
from guardrails_output_parser.chain import chain as guardrails_output_parser_chain
add_routes(app, guardrails_output_parser_chain, path="/guardrails-output-parser")
(Optional) Let's now configure LangSmith. LangSmith will help us trace, monitor and debug LangChain applications. You can sign up for LangSmith here. If you don't have access, you can skip this section
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
If you are inside this directory, then you can spin up a LangServe instance directly by:
langchain serve
This will start the FastAPI app with a server is running locally at http://localhost:8000
We can see all templates at http://127.0.0.1:8000/docs We can access the playground at http://127.0.0.1:8000/guardrails-output-parser/playground
We can access the template from code with:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/guardrails-output-parser")
If Guardrails does not find any profanity, then the translated output is returned as is. If Guardrails does find profanity, then an empty string is returned.