Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import logging | |
import os | |
from typing import Any, Callable, Dict, List, Mapping, Optional, Union | |
import openai | |
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
from langchain_openai.llms.base import BaseOpenAI | |
logger = logging.getLogger(__name__) | |
class AzureOpenAI(BaseOpenAI): | |
"""Azure-specific OpenAI large language models. | |
To use, you should have the ``openai`` python package installed, and the | |
environment variable ``OPENAI_API_KEY`` set with your API key. | |
Any parameters that are valid to be passed to the openai.create call can be passed | |
in, even if not explicitly saved on this class. | |
Example: | |
.. code-block:: python | |
from langchain_openai import AzureOpenAI | |
openai = AzureOpenAI(model_name="gpt-3.5-turbo-instruct") | |
""" | |
azure_endpoint: Union[str, None] = None | |
"""Your Azure endpoint, including the resource. | |
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. | |
Example: `https://example-resource.azure.openai.com/` | |
""" | |
deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") | |
"""A model deployment. | |
If given sets the base client URL to include `/deployments/{azure_deployment}`. | |
Note: this means you won't be able to use non-deployment endpoints. | |
""" | |
openai_api_version: str = Field(default="", alias="api_version") | |
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" | |
openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") | |
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" | |
azure_ad_token: Optional[SecretStr] = None | |
"""Your Azure Active Directory token. | |
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. | |
For more: | |
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. | |
""" | |
azure_ad_token_provider: Union[Callable[[], str], None] = None | |
"""A function that returns an Azure Active Directory token. | |
Will be invoked on every request. | |
""" | |
openai_api_type: str = "" | |
"""Legacy, for openai<1.0.0 support.""" | |
validate_base_url: bool = True | |
"""For backwards compatibility. If legacy val openai_api_base is passed in, try to | |
infer if it is a base_url or azure_endpoint and update accordingly. | |
""" | |
def get_lc_namespace(cls) -> List[str]: | |
"""Get the namespace of the langchain object.""" | |
return ["langchain", "llms", "openai"] | |
def lc_secrets(self) -> Dict[str, str]: | |
return { | |
"openai_api_key": "AZURE_OPENAI_API_KEY", | |
"azure_ad_token": "AZURE_OPENAI_AD_TOKEN", | |
} | |
def is_lc_serializable(cls) -> bool: | |
"""Return whether this model can be serialized by Langchain.""" | |
return True | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
if values["n"] < 1: | |
raise ValueError("n must be at least 1.") | |
if values["streaming"] and values["n"] > 1: | |
raise ValueError("Cannot stream results when n > 1.") | |
if values["streaming"] and values["best_of"] > 1: | |
raise ValueError("Cannot stream results when best_of > 1.") | |
# Check OPENAI_KEY for backwards compatibility. | |
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using | |
# other forms of azure credentials. | |
openai_api_key = ( | |
values["openai_api_key"] | |
or os.getenv("AZURE_OPENAI_API_KEY") | |
or os.getenv("OPENAI_API_KEY") | |
) | |
values["openai_api_key"] = ( | |
convert_to_secret_str(openai_api_key) if openai_api_key else None | |
) | |
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( | |
"AZURE_OPENAI_ENDPOINT" | |
) | |
azure_ad_token = values["azure_ad_token"] or os.getenv("AZURE_OPENAI_AD_TOKEN") | |
values["azure_ad_token"] = ( | |
convert_to_secret_str(azure_ad_token) if azure_ad_token else None | |
) | |
values["openai_api_base"] = values["openai_api_base"] or os.getenv( | |
"OPENAI_API_BASE" | |
) | |
values["openai_proxy"] = get_from_dict_or_env( | |
values, | |
"openai_proxy", | |
"OPENAI_PROXY", | |
default="", | |
) | |
values["openai_organization"] = ( | |
values["openai_organization"] | |
or os.getenv("OPENAI_ORG_ID") | |
or os.getenv("OPENAI_ORGANIZATION") | |
) | |
values["openai_api_version"] = values["openai_api_version"] or os.getenv( | |
"OPENAI_API_VERSION" | |
) | |
values["openai_api_type"] = get_from_dict_or_env( | |
values, "openai_api_type", "OPENAI_API_TYPE", default="azure" | |
) | |
# For backwards compatibility. Before openai v1, no distinction was made | |
# between azure_endpoint and base_url (openai_api_base). | |
openai_api_base = values["openai_api_base"] | |
if openai_api_base and values["validate_base_url"]: | |
if "/openai" not in openai_api_base: | |
values["openai_api_base"] = ( | |
values["openai_api_base"].rstrip("/") + "/openai" | |
) | |
raise ValueError( | |
"As of openai>=1.0.0, Azure endpoints should be specified via " | |
"the `azure_endpoint` param not `openai_api_base` " | |
"(or alias `base_url`)." | |
) | |
if values["deployment_name"]: | |
raise ValueError( | |
"As of openai>=1.0.0, if `deployment_name` (or alias " | |
"`azure_deployment`) is specified then " | |
"`openai_api_base` (or alias `base_url`) should not be. " | |
"Instead use `deployment_name` (or alias `azure_deployment`) " | |
"and `azure_endpoint`." | |
) | |
values["deployment_name"] = None | |
client_params = { | |
"api_version": values["openai_api_version"], | |
"azure_endpoint": values["azure_endpoint"], | |
"azure_deployment": values["deployment_name"], | |
"api_key": values["openai_api_key"].get_secret_value() | |
if values["openai_api_key"] | |
else None, | |
"azure_ad_token": values["azure_ad_token"].get_secret_value() | |
if values["azure_ad_token"] | |
else None, | |
"azure_ad_token_provider": values["azure_ad_token_provider"], | |
"organization": values["openai_organization"], | |
"base_url": values["openai_api_base"], | |
"timeout": values["request_timeout"], | |
"max_retries": values["max_retries"], | |
"default_headers": values["default_headers"], | |
"default_query": values["default_query"], | |
} | |
if not values.get("client"): | |
sync_specific = {"http_client": values["http_client"]} | |
values["client"] = openai.AzureOpenAI( | |
**client_params, **sync_specific | |
).completions | |
if not values.get("async_client"): | |
async_specific = {"http_client": values["http_async_client"]} | |
values["async_client"] = openai.AsyncAzureOpenAI( | |
**client_params, **async_specific | |
).completions | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
return { | |
**{"deployment_name": self.deployment_name}, | |
**super()._identifying_params, | |
} | |
def _invocation_params(self) -> Dict[str, Any]: | |
openai_params = {"model": self.deployment_name} | |
return {**openai_params, **super()._invocation_params} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "azure" | |
def lc_attributes(self) -> Dict[str, Any]: | |
return { | |
"openai_api_type": self.openai_api_type, | |
"openai_api_version": self.openai_api_version, | |
} | |