Spaces:
Runtime error
Runtime error
File size: 8,340 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
from __future__ import annotations
import logging
import os
from typing import Any, Callable, Dict, List, Mapping, Optional, Union
import openai
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_openai.llms.base import BaseOpenAI
logger = logging.getLogger(__name__)
class AzureOpenAI(BaseOpenAI):
"""Azure-specific OpenAI large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain_openai import AzureOpenAI
openai = AzureOpenAI(model_name="gpt-3.5-turbo-instruct")
"""
azure_endpoint: Union[str, None] = None
"""Your Azure endpoint, including the resource.
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
Example: `https://example-resource.azure.openai.com/`
"""
deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment")
"""A model deployment.
If given sets the base client URL to include `/deployments/{azure_deployment}`.
Note: this means you won't be able to use non-deployment endpoints.
"""
openai_api_version: str = Field(default="", alias="api_version")
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
azure_ad_token: Optional[SecretStr] = None
"""Your Azure Active Directory token.
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
For more:
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
"""
azure_ad_token_provider: Union[Callable[[], str], None] = None
"""A function that returns an Azure Active Directory token.
Will be invoked on every request.
"""
openai_api_type: str = ""
"""Legacy, for openai<1.0.0 support."""
validate_base_url: bool = True
"""For backwards compatibility. If legacy val openai_api_base is passed in, try to
infer if it is a base_url or azure_endpoint and update accordingly.
"""
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "llms", "openai"]
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"openai_api_key": "AZURE_OPENAI_API_KEY",
"azure_ad_token": "AZURE_OPENAI_AD_TOKEN",
}
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["streaming"] and values["n"] > 1:
raise ValueError("Cannot stream results when n > 1.")
if values["streaming"] and values["best_of"] > 1:
raise ValueError("Cannot stream results when best_of > 1.")
# Check OPENAI_KEY for backwards compatibility.
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
# other forms of azure credentials.
openai_api_key = (
values["openai_api_key"]
or os.getenv("AZURE_OPENAI_API_KEY")
or os.getenv("OPENAI_API_KEY")
)
values["openai_api_key"] = (
convert_to_secret_str(openai_api_key) if openai_api_key else None
)
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
"AZURE_OPENAI_ENDPOINT"
)
azure_ad_token = values["azure_ad_token"] or os.getenv("AZURE_OPENAI_AD_TOKEN")
values["azure_ad_token"] = (
convert_to_secret_str(azure_ad_token) if azure_ad_token else None
)
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
"OPENAI_API_BASE"
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
values["openai_organization"] = (
values["openai_organization"]
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
"OPENAI_API_VERSION"
)
values["openai_api_type"] = get_from_dict_or_env(
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
)
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = values["openai_api_base"]
if openai_api_base and values["validate_base_url"]:
if "/openai" not in openai_api_base:
values["openai_api_base"] = (
values["openai_api_base"].rstrip("/") + "/openai"
)
raise ValueError(
"As of openai>=1.0.0, Azure endpoints should be specified via "
"the `azure_endpoint` param not `openai_api_base` "
"(or alias `base_url`)."
)
if values["deployment_name"]:
raise ValueError(
"As of openai>=1.0.0, if `deployment_name` (or alias "
"`azure_deployment`) is specified then "
"`openai_api_base` (or alias `base_url`) should not be. "
"Instead use `deployment_name` (or alias `azure_deployment`) "
"and `azure_endpoint`."
)
values["deployment_name"] = None
client_params = {
"api_version": values["openai_api_version"],
"azure_endpoint": values["azure_endpoint"],
"azure_deployment": values["deployment_name"],
"api_key": values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
else None,
"azure_ad_token": values["azure_ad_token"].get_secret_value()
if values["azure_ad_token"]
else None,
"azure_ad_token_provider": values["azure_ad_token_provider"],
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
}
if not values.get("client"):
sync_specific = {"http_client": values["http_client"]}
values["client"] = openai.AzureOpenAI(
**client_params, **sync_specific
).completions
if not values.get("async_client"):
async_specific = {"http_client": values["http_async_client"]}
values["async_client"] = openai.AsyncAzureOpenAI(
**client_params, **async_specific
).completions
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {
**{"deployment_name": self.deployment_name},
**super()._identifying_params,
}
@property
def _invocation_params(self) -> Dict[str, Any]:
openai_params = {"model": self.deployment_name}
return {**openai_params, **super()._invocation_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "azure"
@property
def lc_attributes(self) -> Dict[str, Any]:
return {
"openai_api_type": self.openai_api_type,
"openai_api_version": self.openai_api_version,
}
|