Spaces:
Runtime error
Runtime error
from typing import Any, Dict, List, Optional | |
from langchain_core.callbacks import CallbackManagerForLLMRun | |
from langchain_core.language_models import BaseLLM | |
from langchain_core.outputs import Generation, LLMResult | |
from langchain_core.pydantic_v1 import Field, root_validator | |
class Aphrodite(BaseLLM): | |
"""Aphrodite language model.""" | |
model: str = "" | |
"""The name or path of a HuggingFace Transformers model.""" | |
tensor_parallel_size: Optional[int] = 1 | |
"""The number of GPUs to use for distributed execution with tensor parallelism.""" | |
trust_remote_code: Optional[bool] = False | |
"""Trust remote code (e.g., from HuggingFace) when downloading the model | |
and tokenizer.""" | |
n: int = 1 | |
"""Number of output sequences to return for the given prompt.""" | |
best_of: Optional[int] = None | |
"""Number of output sequences that are generated from the prompt. | |
From these `best_of` sequences, the top `n` sequences are returned. | |
`best_of` must be >= `n`. This is treated as the beam width when | |
`use_beam_search` is True. By default, `best_of` is set to `n`.""" | |
presence_penalty: float = 0.0 | |
"""Float that penalizes new tokens based on whether they appear in the | |
generated text so far. Values > 0 encourage the model to generate new | |
tokens, while values < 0 encourage the model to repeat tokens.""" | |
frequency_penalty: float = 0.0 | |
"""Float that penalizes new tokens based on their frequency in the | |
generated text so far. Applied additively to the logits.""" | |
repetition_penalty: float = 1.0 | |
"""Float that penalizes new tokens based on their frequency in the | |
generated text so far. Applied multiplicatively to the logits.""" | |
temperature: float = 1.0 | |
"""Float that controls the randomness of the sampling. Lower values | |
make the model more deterministic, while higher values make the model | |
more random. Zero is equivalent to greedy sampling.""" | |
top_p: float = 1.0 | |
"""Float that controls the cumulative probability of the top tokens to consider. | |
Must be in (0, 1]. Set to 1.0 to consider all tokens.""" | |
top_k: int = -1 | |
"""Integer that controls the number of top tokens to consider. Set to -1 to | |
consider all tokens (disabled).""" | |
top_a: float = 0.0 | |
"""Float that controls the cutoff for Top-A sampling. Exact cutoff is | |
top_a*max_prob**2. Must be in [0,inf], 0 to disable.""" | |
min_p: float = 0.0 | |
"""Float that controls the cutoff for min-p sampling. Exact cutoff is | |
min_p*max_prob. Must be in [0,1], 0 to disable.""" | |
tfs: float = 1.0 | |
"""Float that controls the cumulative approximate curvature of the | |
distribution to retain for Tail Free Sampling. Must be in (0, 1]. | |
Set to 1.0 to disable.""" | |
eta_cutoff: float = 0.0 | |
"""Float that controls the cutoff threshold for Eta sampling | |
(a form of entropy adaptive truncation sampling). Threshold is | |
calculated as `min(eta, sqrt(eta)*entropy(probs)). Specified | |
in units of 1e-4. Set to 0 to disable.""" | |
epsilon_cutoff: float = 0.0 | |
"""Float that controls the cutoff threshold for Epsilon sampling | |
(simple probability threshold truncation). Specified in units of | |
1e-4. Set to 0 to disable.""" | |
typical_p: float = 1.0 | |
"""Float that controls the cumulative probability of tokens closest | |
in surprise to the expected surprise to consider. Must be in (0, 1]. | |
Set to 1 to disable.""" | |
mirostat_mode: int = 0 | |
"""The mirostat mode to use. 0 for no mirostat, 2 for mirostat v2. | |
Mode 1 is not supported.""" | |
mirostat_tau: float = 0.0 | |
"""The target 'surprisal' that mirostat works towards. Range [0, inf).""" | |
use_beam_search: bool = False | |
"""Whether to use beam search instead of sampling.""" | |
length_penalty: float = 1.0 | |
"""Float that penalizes sequences based on their length. Used only | |
when `use_beam_search` is True.""" | |
early_stopping: bool = False | |
"""Controls the stopping condition for beam search. It accepts the | |
following values: `True`, where the generation stops as soon as there | |
are `best_of` complete candidates; `False`, where a heuristic is applied | |
to the generation stops when it is very unlikely to find better candidates; | |
`never`, where the beam search procedure only stops where there cannot be | |
better candidates (canonical beam search algorithm).""" | |
stop: Optional[List[str]] = None | |
"""List of strings that stop the generation when they are generated. | |
The returned output will not contain the stop tokens.""" | |
stop_token_ids: Optional[List[int]] = None | |
"""List of tokens that stop the generation when they are generated. | |
The returned output will contain the stop tokens unless the stop tokens | |
are special tokens.""" | |
ignore_eos: bool = False | |
"""Whether to ignore the EOS token and continue generating tokens after | |
the EOS token is generated.""" | |
max_tokens: int = 512 | |
"""Maximum number of tokens to generate per output sequence.""" | |
logprobs: Optional[int] = None | |
"""Number of log probabilities to return per output token.""" | |
prompt_logprobs: Optional[int] = None | |
"""Number of log probabilities to return per prompt token.""" | |
custom_token_bans: Optional[List[int]] = None | |
"""List of token IDs to ban from generating.""" | |
skip_special_tokens: bool = True | |
"""Whether to skip special tokens in the output. Defaults to True.""" | |
spaces_between_special_tokens: bool = True | |
"""Whether to add spaces between special tokens in the output. | |
Defaults to True.""" | |
logit_bias: Optional[Dict[str, float]] = None | |
"""List of LogitsProcessors to change the probability of token | |
prediction at runtime.""" | |
dtype: str = "auto" | |
"""The data type for the model weights and activations.""" | |
download_dir: Optional[str] = None | |
"""Directory to download and load the weights. (Default to the default | |
cache dir of huggingface)""" | |
quantization: Optional[str] = None | |
"""Quantization mode to use. Can be one of `awq` or `gptq`.""" | |
aphrodite_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `aphrodite.LLM` call not explicitly | |
specified.""" | |
client: Any #: :meta private: | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that python package exists in environment.""" | |
try: | |
from aphrodite import LLM as AphroditeModel | |
except ImportError: | |
raise ImportError( | |
"Could not import aphrodite-engine python package. " | |
"Please install it with `pip install aphrodite-engine`." | |
) | |
# aphrodite_kwargs = values["aphrodite_kwargs"] | |
# if values.get("quantization"): | |
# aphrodite_kwargs["quantization"] = values["quantization"] | |
values["client"] = AphroditeModel( | |
model=values["model"], | |
tensor_parallel_size=values["tensor_parallel_size"], | |
trust_remote_code=values["trust_remote_code"], | |
dtype=values["dtype"], | |
download_dir=values["download_dir"], | |
**values["aphrodite_kwargs"], | |
) | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling aphrodite.""" | |
return { | |
"n": self.n, | |
"best_of": self.best_of, | |
"max_tokens": self.max_tokens, | |
"top_k": self.top_k, | |
"top_p": self.top_p, | |
"top_a": self.top_a, | |
"min_p": self.min_p, | |
"temperature": self.temperature, | |
"presence_penalty": self.presence_penalty, | |
"frequency_penalty": self.frequency_penalty, | |
"repetition_penalty": self.repetition_penalty, | |
"tfs": self.tfs, | |
"eta_cutoff": self.eta_cutoff, | |
"epsilon_cutoff": self.epsilon_cutoff, | |
"typical_p": self.typical_p, | |
"mirostat_mode": self.mirostat_mode, | |
"mirostat_tau": self.mirostat_tau, | |
"length_penalty": self.length_penalty, | |
"early_stopping": self.early_stopping, | |
"use_beam_search": self.use_beam_search, | |
"stop": self.stop, | |
"ignore_eos": self.ignore_eos, | |
"logprobs": self.logprobs, | |
"prompt_logprobs": self.prompt_logprobs, | |
"custom_token_bans": self.custom_token_bans, | |
"skip_special_tokens": self.skip_special_tokens, | |
"spaces_between_special_tokens": self.spaces_between_special_tokens, | |
"logit_bias": self.logit_bias, | |
} | |
def _generate( | |
self, | |
prompts: List[str], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> LLMResult: | |
"""Run the LLM on the given prompt and input.""" | |
from aphrodite import SamplingParams | |
# build sampling parameters | |
params = {**self._default_params, **kwargs, "stop": stop} | |
if "logit_bias" in params: | |
del params["logit_bias"] | |
sampling_params = SamplingParams(**params) | |
# call the model | |
outputs = self.client.generate(prompts, sampling_params) | |
generations = [] | |
for output in outputs: | |
text = output.outputs[0].text | |
generations.append([Generation(text=text)]) | |
return LLMResult(generations=generations) | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "aphrodite" | |