Spaces:
Runtime error
Runtime error
File size: 9,619 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from typing import Any, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import Field, root_validator
class Aphrodite(BaseLLM):
"""Aphrodite language model."""
model: str = ""
"""The name or path of a HuggingFace Transformers model."""
tensor_parallel_size: Optional[int] = 1
"""The number of GPUs to use for distributed execution with tensor parallelism."""
trust_remote_code: Optional[bool] = False
"""Trust remote code (e.g., from HuggingFace) when downloading the model
and tokenizer."""
n: int = 1
"""Number of output sequences to return for the given prompt."""
best_of: Optional[int] = None
"""Number of output sequences that are generated from the prompt.
From these `best_of` sequences, the top `n` sequences are returned.
`best_of` must be >= `n`. This is treated as the beam width when
`use_beam_search` is True. By default, `best_of` is set to `n`."""
presence_penalty: float = 0.0
"""Float that penalizes new tokens based on whether they appear in the
generated text so far. Values > 0 encourage the model to generate new
tokens, while values < 0 encourage the model to repeat tokens."""
frequency_penalty: float = 0.0
"""Float that penalizes new tokens based on their frequency in the
generated text so far. Applied additively to the logits."""
repetition_penalty: float = 1.0
"""Float that penalizes new tokens based on their frequency in the
generated text so far. Applied multiplicatively to the logits."""
temperature: float = 1.0
"""Float that controls the randomness of the sampling. Lower values
make the model more deterministic, while higher values make the model
more random. Zero is equivalent to greedy sampling."""
top_p: float = 1.0
"""Float that controls the cumulative probability of the top tokens to consider.
Must be in (0, 1]. Set to 1.0 to consider all tokens."""
top_k: int = -1
"""Integer that controls the number of top tokens to consider. Set to -1 to
consider all tokens (disabled)."""
top_a: float = 0.0
"""Float that controls the cutoff for Top-A sampling. Exact cutoff is
top_a*max_prob**2. Must be in [0,inf], 0 to disable."""
min_p: float = 0.0
"""Float that controls the cutoff for min-p sampling. Exact cutoff is
min_p*max_prob. Must be in [0,1], 0 to disable."""
tfs: float = 1.0
"""Float that controls the cumulative approximate curvature of the
distribution to retain for Tail Free Sampling. Must be in (0, 1].
Set to 1.0 to disable."""
eta_cutoff: float = 0.0
"""Float that controls the cutoff threshold for Eta sampling
(a form of entropy adaptive truncation sampling). Threshold is
calculated as `min(eta, sqrt(eta)*entropy(probs)). Specified
in units of 1e-4. Set to 0 to disable."""
epsilon_cutoff: float = 0.0
"""Float that controls the cutoff threshold for Epsilon sampling
(simple probability threshold truncation). Specified in units of
1e-4. Set to 0 to disable."""
typical_p: float = 1.0
"""Float that controls the cumulative probability of tokens closest
in surprise to the expected surprise to consider. Must be in (0, 1].
Set to 1 to disable."""
mirostat_mode: int = 0
"""The mirostat mode to use. 0 for no mirostat, 2 for mirostat v2.
Mode 1 is not supported."""
mirostat_tau: float = 0.0
"""The target 'surprisal' that mirostat works towards. Range [0, inf)."""
use_beam_search: bool = False
"""Whether to use beam search instead of sampling."""
length_penalty: float = 1.0
"""Float that penalizes sequences based on their length. Used only
when `use_beam_search` is True."""
early_stopping: bool = False
"""Controls the stopping condition for beam search. It accepts the
following values: `True`, where the generation stops as soon as there
are `best_of` complete candidates; `False`, where a heuristic is applied
to the generation stops when it is very unlikely to find better candidates;
`never`, where the beam search procedure only stops where there cannot be
better candidates (canonical beam search algorithm)."""
stop: Optional[List[str]] = None
"""List of strings that stop the generation when they are generated.
The returned output will not contain the stop tokens."""
stop_token_ids: Optional[List[int]] = None
"""List of tokens that stop the generation when they are generated.
The returned output will contain the stop tokens unless the stop tokens
are special tokens."""
ignore_eos: bool = False
"""Whether to ignore the EOS token and continue generating tokens after
the EOS token is generated."""
max_tokens: int = 512
"""Maximum number of tokens to generate per output sequence."""
logprobs: Optional[int] = None
"""Number of log probabilities to return per output token."""
prompt_logprobs: Optional[int] = None
"""Number of log probabilities to return per prompt token."""
custom_token_bans: Optional[List[int]] = None
"""List of token IDs to ban from generating."""
skip_special_tokens: bool = True
"""Whether to skip special tokens in the output. Defaults to True."""
spaces_between_special_tokens: bool = True
"""Whether to add spaces between special tokens in the output.
Defaults to True."""
logit_bias: Optional[Dict[str, float]] = None
"""List of LogitsProcessors to change the probability of token
prediction at runtime."""
dtype: str = "auto"
"""The data type for the model weights and activations."""
download_dir: Optional[str] = None
"""Directory to download and load the weights. (Default to the default
cache dir of huggingface)"""
quantization: Optional[str] = None
"""Quantization mode to use. Can be one of `awq` or `gptq`."""
aphrodite_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `aphrodite.LLM` call not explicitly
specified."""
client: Any #: :meta private:
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
from aphrodite import LLM as AphroditeModel
except ImportError:
raise ImportError(
"Could not import aphrodite-engine python package. "
"Please install it with `pip install aphrodite-engine`."
)
# aphrodite_kwargs = values["aphrodite_kwargs"]
# if values.get("quantization"):
# aphrodite_kwargs["quantization"] = values["quantization"]
values["client"] = AphroditeModel(
model=values["model"],
tensor_parallel_size=values["tensor_parallel_size"],
trust_remote_code=values["trust_remote_code"],
dtype=values["dtype"],
download_dir=values["download_dir"],
**values["aphrodite_kwargs"],
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling aphrodite."""
return {
"n": self.n,
"best_of": self.best_of,
"max_tokens": self.max_tokens,
"top_k": self.top_k,
"top_p": self.top_p,
"top_a": self.top_a,
"min_p": self.min_p,
"temperature": self.temperature,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"repetition_penalty": self.repetition_penalty,
"tfs": self.tfs,
"eta_cutoff": self.eta_cutoff,
"epsilon_cutoff": self.epsilon_cutoff,
"typical_p": self.typical_p,
"mirostat_mode": self.mirostat_mode,
"mirostat_tau": self.mirostat_tau,
"length_penalty": self.length_penalty,
"early_stopping": self.early_stopping,
"use_beam_search": self.use_beam_search,
"stop": self.stop,
"ignore_eos": self.ignore_eos,
"logprobs": self.logprobs,
"prompt_logprobs": self.prompt_logprobs,
"custom_token_bans": self.custom_token_bans,
"skip_special_tokens": self.skip_special_tokens,
"spaces_between_special_tokens": self.spaces_between_special_tokens,
"logit_bias": self.logit_bias,
}
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
from aphrodite import SamplingParams
# build sampling parameters
params = {**self._default_params, **kwargs, "stop": stop}
if "logit_bias" in params:
del params["logit_bias"]
sampling_params = SamplingParams(**params)
# call the model
outputs = self.client.generate(prompts, sampling_params)
generations = []
for output in outputs:
text = output.outputs[0].text
generations.append([Generation(text=text)])
return LLMResult(generations=generations)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "aphrodite"
|