File size: 9,619 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from typing import Any, Dict, List, Optional

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.pydantic_v1 import Field, root_validator


class Aphrodite(BaseLLM):
    """Aphrodite language model."""

    model: str = ""
    """The name or path of a HuggingFace Transformers model."""

    tensor_parallel_size: Optional[int] = 1
    """The number of GPUs to use for distributed execution with tensor parallelism."""

    trust_remote_code: Optional[bool] = False
    """Trust remote code (e.g., from HuggingFace) when downloading the model 
    and tokenizer."""

    n: int = 1
    """Number of output sequences to return for the given prompt."""

    best_of: Optional[int] = None
    """Number of output sequences that are generated from the prompt.
    From these `best_of` sequences, the top `n` sequences are returned.
    `best_of` must be >= `n`. This is treated as the beam width when
    `use_beam_search` is True. By default, `best_of` is set to `n`."""

    presence_penalty: float = 0.0
    """Float that penalizes new tokens based on whether they appear in the 
    generated text so far. Values > 0 encourage the model to generate new
    tokens, while values < 0 encourage the model to repeat tokens."""

    frequency_penalty: float = 0.0
    """Float that penalizes new tokens based on their frequency in the 
    generated text so far. Applied additively to the logits."""

    repetition_penalty: float = 1.0
    """Float that penalizes new tokens based on their frequency in the
    generated text so far. Applied multiplicatively to the logits."""

    temperature: float = 1.0
    """Float that controls the randomness of the sampling. Lower values
    make the model more deterministic, while higher values make the model
    more random. Zero is equivalent to greedy sampling."""

    top_p: float = 1.0
    """Float that controls the cumulative probability of the top tokens to consider.
    Must be in (0, 1]. Set to 1.0 to consider all tokens."""

    top_k: int = -1
    """Integer that controls the number of top tokens to consider. Set to -1 to
    consider all tokens (disabled)."""

    top_a: float = 0.0
    """Float that controls the cutoff for Top-A sampling. Exact cutoff is
    top_a*max_prob**2. Must be in [0,inf], 0 to disable."""

    min_p: float = 0.0
    """Float that controls the cutoff for min-p sampling. Exact cutoff is
    min_p*max_prob. Must be in [0,1], 0 to disable."""

    tfs: float = 1.0
    """Float that controls the cumulative approximate curvature of the
    distribution to retain for Tail Free Sampling. Must be in (0, 1].
    Set to 1.0 to disable."""

    eta_cutoff: float = 0.0
    """Float that controls the cutoff threshold for Eta sampling
    (a form of entropy adaptive truncation sampling). Threshold is
    calculated as `min(eta, sqrt(eta)*entropy(probs)). Specified
    in units of 1e-4. Set to 0 to disable."""

    epsilon_cutoff: float = 0.0
    """Float that controls the cutoff threshold for Epsilon sampling
    (simple probability threshold truncation). Specified in units of
    1e-4. Set to 0 to disable."""

    typical_p: float = 1.0
    """Float that controls the cumulative probability of tokens closest
    in surprise to the expected surprise to consider. Must be in (0, 1].
    Set to 1 to disable."""

    mirostat_mode: int = 0
    """The mirostat mode to use. 0 for no mirostat, 2 for mirostat v2.
    Mode 1 is not supported."""

    mirostat_tau: float = 0.0
    """The target 'surprisal' that mirostat works towards. Range [0, inf)."""

    use_beam_search: bool = False
    """Whether to use beam search instead of sampling."""

    length_penalty: float = 1.0
    """Float that penalizes sequences based on their length. Used only
    when `use_beam_search` is True."""

    early_stopping: bool = False
    """Controls the stopping condition for beam search. It accepts the
    following values: `True`, where the generation stops as soon as there
    are `best_of` complete candidates; `False`, where a heuristic is applied
    to the generation stops when it is very unlikely to find better candidates;
    `never`, where the beam search procedure only stops where there cannot be
    better candidates (canonical beam search algorithm)."""

    stop: Optional[List[str]] = None
    """List of strings that stop the generation when they are generated.
    The returned output will not contain the stop tokens."""

    stop_token_ids: Optional[List[int]] = None
    """List of tokens that stop the generation when they are generated.
    The returned output will contain the stop tokens unless the stop tokens
    are special tokens."""

    ignore_eos: bool = False
    """Whether to ignore the EOS token and continue generating tokens after 
    the EOS token is generated."""

    max_tokens: int = 512
    """Maximum number of tokens to generate per output sequence."""

    logprobs: Optional[int] = None
    """Number of log probabilities to return per output token."""

    prompt_logprobs: Optional[int] = None
    """Number of log probabilities to return per prompt token."""

    custom_token_bans: Optional[List[int]] = None
    """List of token IDs to ban from generating."""

    skip_special_tokens: bool = True
    """Whether to skip special tokens in the output. Defaults to True."""

    spaces_between_special_tokens: bool = True
    """Whether to add spaces between special tokens in the output.
    Defaults to True."""

    logit_bias: Optional[Dict[str, float]] = None
    """List of LogitsProcessors to change the probability of token
    prediction at runtime."""

    dtype: str = "auto"
    """The data type for the model weights and activations."""

    download_dir: Optional[str] = None
    """Directory to download and load the weights. (Default to the default 
    cache dir of huggingface)"""

    quantization: Optional[str] = None
    """Quantization mode to use. Can be one of `awq` or `gptq`."""

    aphrodite_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `aphrodite.LLM` call not explicitly
    specified."""

    client: Any  #: :meta private:

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that python package exists in environment."""

        try:
            from aphrodite import LLM as AphroditeModel
        except ImportError:
            raise ImportError(
                "Could not import aphrodite-engine python package. "
                "Please install it with `pip install aphrodite-engine`."
            )

        # aphrodite_kwargs = values["aphrodite_kwargs"]
        # if values.get("quantization"):
        #     aphrodite_kwargs["quantization"] = values["quantization"]

        values["client"] = AphroditeModel(
            model=values["model"],
            tensor_parallel_size=values["tensor_parallel_size"],
            trust_remote_code=values["trust_remote_code"],
            dtype=values["dtype"],
            download_dir=values["download_dir"],
            **values["aphrodite_kwargs"],
        )

        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling aphrodite."""
        return {
            "n": self.n,
            "best_of": self.best_of,
            "max_tokens": self.max_tokens,
            "top_k": self.top_k,
            "top_p": self.top_p,
            "top_a": self.top_a,
            "min_p": self.min_p,
            "temperature": self.temperature,
            "presence_penalty": self.presence_penalty,
            "frequency_penalty": self.frequency_penalty,
            "repetition_penalty": self.repetition_penalty,
            "tfs": self.tfs,
            "eta_cutoff": self.eta_cutoff,
            "epsilon_cutoff": self.epsilon_cutoff,
            "typical_p": self.typical_p,
            "mirostat_mode": self.mirostat_mode,
            "mirostat_tau": self.mirostat_tau,
            "length_penalty": self.length_penalty,
            "early_stopping": self.early_stopping,
            "use_beam_search": self.use_beam_search,
            "stop": self.stop,
            "ignore_eos": self.ignore_eos,
            "logprobs": self.logprobs,
            "prompt_logprobs": self.prompt_logprobs,
            "custom_token_bans": self.custom_token_bans,
            "skip_special_tokens": self.skip_special_tokens,
            "spaces_between_special_tokens": self.spaces_between_special_tokens,
            "logit_bias": self.logit_bias,
        }

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        """Run the LLM on the given prompt and input."""

        from aphrodite import SamplingParams

        # build sampling parameters
        params = {**self._default_params, **kwargs, "stop": stop}
        if "logit_bias" in params:
            del params["logit_bias"]
        sampling_params = SamplingParams(**params)
        # call the model
        outputs = self.client.generate(prompts, sampling_params)

        generations = []
        for output in outputs:
            text = output.outputs[0].text
            generations.append([Generation(text=text)])

        return LLMResult(generations=generations)

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "aphrodite"