Spaces:
Runtime error
Runtime error
from typing import Any, Dict, List, Mapping, Optional | |
import requests | |
from langchain_core.embeddings import Embeddings | |
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator | |
from langchain_core.utils import get_from_dict_or_env | |
DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32" | |
MAX_BATCH_SIZE = 1024 | |
class DeepInfraEmbeddings(BaseModel, Embeddings): | |
"""Deep Infra's embedding inference service. | |
To use, you should have the | |
environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass | |
it as a named parameter to the constructor. | |
There are multiple embeddings models available, | |
see https://deepinfra.com/models?type=embeddings. | |
Example: | |
.. code-block:: python | |
from langchain_community.embeddings import DeepInfraEmbeddings | |
deepinfra_emb = DeepInfraEmbeddings( | |
model_id="sentence-transformers/clip-ViT-B-32", | |
deepinfra_api_token="my-api-key" | |
) | |
r1 = deepinfra_emb.embed_documents( | |
[ | |
"Alpha is the first letter of Greek alphabet", | |
"Beta is the second letter of Greek alphabet", | |
] | |
) | |
r2 = deepinfra_emb.embed_query( | |
"What is the second letter of Greek alphabet" | |
) | |
""" | |
model_id: str = DEFAULT_MODEL_ID | |
"""Embeddings model to use.""" | |
normalize: bool = False | |
"""whether to normalize the computed embeddings""" | |
embed_instruction: str = "passage: " | |
"""Instruction used to embed documents.""" | |
query_instruction: str = "query: " | |
"""Instruction used to embed the query.""" | |
model_kwargs: Optional[dict] = None | |
"""Other model keyword args""" | |
deepinfra_api_token: Optional[str] = None | |
"""API token for Deep Infra. If not provided, the token is | |
fetched from the environment variable 'DEEPINFRA_API_TOKEN'.""" | |
batch_size: int = MAX_BATCH_SIZE | |
"""Batch size for embedding requests.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
deepinfra_api_token = get_from_dict_or_env( | |
values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" | |
) | |
values["deepinfra_api_token"] = deepinfra_api_token | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return {"model_id": self.model_id} | |
def _embed(self, input: List[str]) -> List[List[float]]: | |
_model_kwargs = self.model_kwargs or {} | |
# HTTP headers for authorization | |
headers = { | |
"Authorization": f"bearer {self.deepinfra_api_token}", | |
"Content-Type": "application/json", | |
} | |
# send request | |
try: | |
res = requests.post( | |
f"https://api.deepinfra.com/v1/inference/{self.model_id}", | |
headers=headers, | |
json={"inputs": input, "normalize": self.normalize, **_model_kwargs}, | |
) | |
except requests.exceptions.RequestException as e: | |
raise ValueError(f"Error raised by inference endpoint: {e}") | |
if res.status_code != 200: | |
raise ValueError( | |
"Error raised by inference API HTTP code: %s, %s" | |
% (res.status_code, res.text) | |
) | |
try: | |
t = res.json() | |
embeddings = t["embeddings"] | |
except requests.exceptions.JSONDecodeError as e: | |
raise ValueError( | |
f"Error raised by inference API: {e}.\nResponse: {res.text}" | |
) | |
return embeddings | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
"""Embed documents using a Deep Infra deployed embedding model. | |
For larger batches, the input list of texts is chunked into smaller | |
batches to avoid exceeding the maximum request size. | |
Args: | |
texts: The list of texts to embed. | |
Returns: | |
List of embeddings, one for each text. | |
""" | |
embeddings = [] | |
instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts] | |
chunks = [ | |
instruction_pairs[i : i + self.batch_size] | |
for i in range(0, len(instruction_pairs), self.batch_size) | |
] | |
for chunk in chunks: | |
embeddings += self._embed(chunk) | |
return embeddings | |
def embed_query(self, text: str) -> List[float]: | |
"""Embed a query using a Deep Infra deployed embedding model. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embeddings for the text. | |
""" | |
instruction_pair = f"{self.query_instruction}{text}" | |
embedding = self._embed([instruction_pair])[0] | |
return embedding | |