File size: 5,002 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from typing import Any, Dict, List, Mapping, Optional

import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_core.utils import get_from_dict_or_env

DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32"
MAX_BATCH_SIZE = 1024


class DeepInfraEmbeddings(BaseModel, Embeddings):
    """Deep Infra's embedding inference service.

    To use, you should have the
    environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass
    it as a named parameter to the constructor.
    There are multiple embeddings models available,
    see https://deepinfra.com/models?type=embeddings.

    Example:
        .. code-block:: python

            from langchain_community.embeddings import DeepInfraEmbeddings
            deepinfra_emb = DeepInfraEmbeddings(
                model_id="sentence-transformers/clip-ViT-B-32",
                deepinfra_api_token="my-api-key"
            )
            r1 = deepinfra_emb.embed_documents(
                [
                    "Alpha is the first letter of Greek alphabet",
                    "Beta is the second letter of Greek alphabet",
                ]
            )
            r2 = deepinfra_emb.embed_query(
                "What is the second letter of Greek alphabet"
            )

    """

    model_id: str = DEFAULT_MODEL_ID
    """Embeddings model to use."""
    normalize: bool = False
    """whether to normalize the computed embeddings"""
    embed_instruction: str = "passage: "
    """Instruction used to embed documents."""
    query_instruction: str = "query: "
    """Instruction used to embed the query."""
    model_kwargs: Optional[dict] = None
    """Other model keyword args"""
    deepinfra_api_token: Optional[str] = None
    """API token for Deep Infra. If not provided, the token is 
    fetched from the environment variable 'DEEPINFRA_API_TOKEN'."""
    batch_size: int = MAX_BATCH_SIZE
    """Batch size for embedding requests."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        deepinfra_api_token = get_from_dict_or_env(
            values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN"
        )
        values["deepinfra_api_token"] = deepinfra_api_token
        return values

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {"model_id": self.model_id}

    def _embed(self, input: List[str]) -> List[List[float]]:
        _model_kwargs = self.model_kwargs or {}
        # HTTP headers for authorization
        headers = {
            "Authorization": f"bearer {self.deepinfra_api_token}",
            "Content-Type": "application/json",
        }
        # send request
        try:
            res = requests.post(
                f"https://api.deepinfra.com/v1/inference/{self.model_id}",
                headers=headers,
                json={"inputs": input, "normalize": self.normalize, **_model_kwargs},
            )
        except requests.exceptions.RequestException as e:
            raise ValueError(f"Error raised by inference endpoint: {e}")

        if res.status_code != 200:
            raise ValueError(
                "Error raised by inference API HTTP code: %s, %s"
                % (res.status_code, res.text)
            )
        try:
            t = res.json()
            embeddings = t["embeddings"]
        except requests.exceptions.JSONDecodeError as e:
            raise ValueError(
                f"Error raised by inference API: {e}.\nResponse: {res.text}"
            )

        return embeddings

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Embed documents using a Deep Infra deployed embedding model.
        For larger batches, the input list of texts is chunked into smaller
        batches to avoid exceeding the maximum request size.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """

        embeddings = []
        instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts]

        chunks = [
            instruction_pairs[i : i + self.batch_size]
            for i in range(0, len(instruction_pairs), self.batch_size)
        ]
        for chunk in chunks:
            embeddings += self._embed(chunk)

        return embeddings

    def embed_query(self, text: str) -> List[float]:
        """Embed a query using a Deep Infra deployed embedding model.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        instruction_pair = f"{self.query_instruction}{text}"
        embedding = self._embed([instruction_pair])[0]
        return embedding