Spaces:
Runtime error
Runtime error
import pandas as pd | |
import gradio as gr | |
import hashlib, base64 | |
import openai | |
from tqdm import tqdm | |
tqdm().pandas() | |
# querying OpenAI for generation | |
import openAI_manager as oai_mgr | |
#import initOpenAI, examples_to_prompt, genChatGPT, generateTestSentences | |
# bias testing manager | |
import mgr_bias_scoring as bt_mgr | |
import mgr_sentences as smgr | |
# error messages | |
from error_messages import * | |
G_CORE_BIAS_NAME = None | |
# hashing | |
def getHashForString(text): | |
d=hashlib.md5(bytes(text, encoding='utf-8')).digest() | |
d=base64.urlsafe_b64encode(d) | |
return d.decode('utf-8') | |
def getBiasName(gr1_lst, gr2_lst, att1_lst, att2_lst): | |
global G_CORE_BIAS_NAME | |
bias_name = G_CORE_BIAS_NAME | |
if bias_name == None: | |
full_spec = ''.join(gr1_lst)+''.join(gr2_lst)+''.join(att1_lst)+''.join(att2_lst) | |
hash = getHashForString(full_spec) | |
bias_name = f"{gr1_lst[0].replace(' ','-')}_{gr2_lst[0].replace(' ','-')}__{att1_lst[0].replace(' ','-')}_{att2_lst[0].replace(' ','-')}_{hash}" | |
return bias_name | |
def _generateOnline(bias_spec, progress, key, num2gen, isSaving=False): | |
test_sentences = [] | |
gen_err_msg = None | |
genAttrCounts = {} | |
print(f"Bias spec dict: {bias_spec}") | |
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec) | |
print(f"A1: {a1}") | |
print(f"A2: {a2}") | |
if "custom_counts" in bias_spec: | |
print("Bias spec is custom !!") | |
genAttrCounts = bias_spec['custom_counts'][0] | |
for a,c in bias_spec['custom_counts'][1].items(): | |
genAttrCounts[a] = c | |
else: | |
print("Bias spec is standard !!") | |
genAttrCounts = {a:num2gen for a in a1+a2} | |
# Initiate with key | |
try: | |
models = oai_mgr.initOpenAI(key) | |
model_names = [m['id'] for m in models['data']] | |
print(f"Model names: {model_names}") | |
except openai.error.AuthenticationError as err: | |
#raise gr.Error(OPENAI_INIT_ERROR.replace("<ERR>", str(err))) | |
gen_err_msg = OPENAI_INIT_ERROR.replace("<ERR>", str(err)) | |
if gen_err_msg != None: | |
return [], gen_err_msg | |
else: | |
if "gpt-3.5-turbo" in model_names: | |
print("Access to ChatGPT") | |
if "gpt-4" in model_names: | |
print("Access to GPT-4") | |
model_name = "gpt-3.5-turbo" #"gpt-4" | |
# Generate one example | |
#gen = genChatGPT(model_name, ["man","math"], 2, 5, | |
# [{"Keywords": ["sky","blue"], "Sentence": "the sky is blue"} | |
# ], | |
# temperature=0.8) | |
#print(f"Test gen: {gen}") | |
# Generate all test sentences | |
#gens = oai_mgr.generateTestSentences(model_name, g1+g2, a1+a2, num2gen, progress) | |
gens = oai_mgr.generateTestSentencesCustom(model_name, g1, g2, a1+a2, genAttrCounts, bias_spec, progress) | |
print("--GENS--") | |
print(gens) | |
if len(gens) == 0: | |
print("No sentences generated, returning") | |
return [], gen_err_msg | |
for org_gt, at, s, gt1, gt2 in gens: | |
test_sentences.append([s,org_gt,at,gt1,gt2]) | |
# save the generations immediately | |
print("Making save dataframe...") | |
save_df = pd.DataFrame(test_sentences, columns=["Sentence",'org_grp_term', | |
"Attribute term", "Group term 1", | |
"Group term 2"]) | |
## make the templates to save | |
# 1. bias specification | |
print(f"Bias spec dict: {bias_spec}") | |
# generate laternative sentence | |
print(f"Columns before alternative sentence: {list(save_df.columns)}") | |
save_df['Alternative Sentence'] = save_df.progress_apply(oai_mgr.chatgpt_sentence_alternative, axis=1, model_name=model_name) | |
print(f"Columns after alternative sentence: {list(save_df.columns)}") | |
# 2. convert to templates | |
save_df['Template'] = save_df.progress_apply(bt_mgr.sentence_to_template_df, axis=1) | |
print("Convert generated sentences to templates...") | |
save_df[['Alternative Template','grp_refs']] = save_df.progress_apply(bt_mgr.ref_terms_sentence_to_template, axis=1) | |
print(f"Columns with templates: {list(save_df.columns)}") | |
# 3. convert to pairs | |
print("Convert generated sentences to ordered pairs...") | |
test_pairs_df = bt_mgr.convert2pairsFromDF(bias_spec, save_df) | |
print(f"Test pairs cols: {list(test_pairs_df.columns)}") | |
bias_name = getBiasName(g1, g2, a1, a2) | |
save_df = save_df.rename(columns={"Sentence":'sentence', | |
"Alternative Sentence":"alt_sentence", | |
"Attribute term": 'att_term', | |
"Template":"template", | |
"Alternative Template": "alt_template", | |
"Group term 1": "grp_term1", | |
"Group term 2": "grp_term2"}) | |
save_df['label_1'] = test_pairs_df['label_1'] | |
save_df['label_2'] = test_pairs_df['label_2'] | |
save_df['bias_spec'] = bias_name | |
save_df['type'] = 'tool' | |
save_df['gen_model'] = model_name | |
col_order = ["sentence", "alt_sentence", "org_grp_term", "att_term", "template", | |
"alt_template", "grp_term1", "grp_term2", "grp_refs", "label_1", "label_2", | |
"bias_spec", "type", "gen_model"] | |
save_df = save_df[col_order] | |
print(f"Save cols prep: {list(save_df.columns)}") | |
if isSaving == True: | |
print(f"Saving: {save_df.head(1)}") | |
smgr.saveSentences(save_df) #[["Group term","Attribute term","Test sentence"]]) | |
num_sentences = len(test_sentences) | |
print(f"Returned num sentences: {num_sentences}") | |
# list for Gradio dataframe | |
ret_df = [list(r.values) for i, r in save_df[['sentence', 'alt_sentence', 'grp_term1', 'grp_term2', "att_term"]].iterrows()] | |
print(ret_df) | |
return ret_df, gen_err_msg | |
def _getSavedSentences(bias_spec, progress, use_paper_sentences): | |
test_sentences = [] | |
print(f"Bias spec dict: {bias_spec}") | |
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec) | |
for gi, g_term in enumerate(g1+g2): | |
att_list = a1+a2 | |
grp_list = g1+g2 | |
# match "-" and no space | |
att_list_dash = [t.replace(' ','-') for t in att_list] | |
att_list.extend(att_list_dash) | |
att_list_nospace = [t.replace(' ','') for t in att_list] | |
att_list.extend(att_list_nospace) | |
att_list = list(set(att_list)) | |
progress(gi/len(g1+g2), desc=f"{g_term}") | |
_, sentence_df, _ = smgr.getSavedSentences(g_term) | |
# only take from paper & gpt3.5 | |
flt_gen_models = ["gpt-3.5","gpt-3.5-turbo","gpt-4"] | |
print(f"Before filter: {sentence_df.shape[0]}") | |
if use_paper_sentences == True: | |
if 'type' in list(sentence_df.columns): | |
sentence_df = sentence_df.query("type=='paper' and gen_model in @flt_gen_models") | |
print(f"After filter: {sentence_df.shape[0]}") | |
else: | |
if 'type' in list(sentence_df.columns): | |
# only use GPT-3.5 generations for now - todo: add settings option for this | |
sentence_df = sentence_df.query("gen_model in @flt_gen_models") | |
print(f"After filter: {sentence_df.shape[0]}") | |
if sentence_df.shape[0] > 0: | |
sentence_df = sentence_df[['grp_term1','grp_term2','att_term','sentence','alt_sentence']] | |
sentence_df = sentence_df.rename(columns={'grp_term1': "Group term 1", | |
'grp_term2': "Group term 2", | |
"att_term": "Attribute term", | |
"sentence": "Sentence", | |
"alt_sentence": "Alt Sentence"}) | |
sel = sentence_df[(sentence_df['Attribute term'].isin(att_list)) & \ | |
((sentence_df['Group term 1'].isin(grp_list)) & (sentence_df['Group term 2'].isin(grp_list))) ].values | |
if len(sel) > 0: | |
for gt1,gt2,at,s,a_s in sel: | |
#if at == "speech-language-pathologist": | |
# print(f"Special case: {at}") | |
# at == "speech-language pathologist" # legacy, special case | |
#else: | |
#at = at #.replace("-"," ") | |
#gt = gt #.replace("-"," ") | |
test_sentences.append([s,a_s,gt1,gt2,at]) | |
else: | |
print("Test sentences empty!") | |
#raise gr.Error(NO_SENTENCES_ERROR) | |
return test_sentences |