File size: 8,782 Bytes
c05c725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import pandas as pd
import gradio as gr
import hashlib, base64
import openai
from tqdm import tqdm
tqdm().pandas()

# querying OpenAI for generation
import openAI_manager as oai_mgr 
#import initOpenAI, examples_to_prompt, genChatGPT, generateTestSentences

# bias testing manager
import mgr_bias_scoring as bt_mgr
import mgr_sentences as smgr

# error messages
from error_messages import *

G_CORE_BIAS_NAME = None

# hashing
def getHashForString(text):
  d=hashlib.md5(bytes(text, encoding='utf-8')).digest()
  d=base64.urlsafe_b64encode(d)

  return d.decode('utf-8')

def getBiasName(gr1_lst, gr2_lst, att1_lst, att2_lst):
    global G_CORE_BIAS_NAME

    bias_name = G_CORE_BIAS_NAME
    if bias_name == None:
        full_spec = ''.join(gr1_lst)+''.join(gr2_lst)+''.join(att1_lst)+''.join(att2_lst)
        hash = getHashForString(full_spec)
        bias_name = f"{gr1_lst[0].replace(' ','-')}_{gr2_lst[0].replace(' ','-')}__{att1_lst[0].replace(' ','-')}_{att2_lst[0].replace(' ','-')}_{hash}"
  
    return bias_name

def _generateOnline(bias_spec, progress, key, num2gen, isSaving=False):
    test_sentences = []
    gen_err_msg = None
    genAttrCounts = {}
    print(f"Bias spec dict: {bias_spec}")
    g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
    print(f"A1: {a1}")
    print(f"A2: {a2}")

    if "custom_counts" in bias_spec:
        print("Bias spec is custom !!")
        genAttrCounts = bias_spec['custom_counts'][0]
        for a,c in bias_spec['custom_counts'][1].items():
            genAttrCounts[a] = c
    else:
        print("Bias spec is standard !!")
        genAttrCounts = {a:num2gen for a in a1+a2}

    # Initiate with key
    try:
        models = oai_mgr.initOpenAI(key)
        model_names = [m['id'] for m in models['data']]
        print(f"Model names: {model_names}")
    except openai.error.AuthenticationError as err:
        #raise gr.Error(OPENAI_INIT_ERROR.replace("<ERR>", str(err)))
        gen_err_msg = OPENAI_INIT_ERROR.replace("<ERR>", str(err))
    
    if gen_err_msg != None:
        return [], gen_err_msg
    else:
        if "gpt-3.5-turbo" in model_names:
            print("Access to ChatGPT")
        if "gpt-4" in model_names:
            print("Access to GPT-4")

        model_name = "gpt-3.5-turbo" #"gpt-4"

        # Generate one example
        #gen = genChatGPT(model_name, ["man","math"], 2, 5, 
        #            [{"Keywords": ["sky","blue"], "Sentence": "the sky is blue"}
        #            ], 
        #            temperature=0.8)
        #print(f"Test gen: {gen}")

        # Generate all test sentences
        
        #gens = oai_mgr.generateTestSentences(model_name, g1+g2, a1+a2, num2gen, progress)
        gens = oai_mgr.generateTestSentencesCustom(model_name, g1, g2, a1+a2, genAttrCounts, bias_spec, progress)
        print("--GENS--")
        print(gens)
        if len(gens) == 0:
            print("No sentences generated, returning")
            return [], gen_err_msg

        for org_gt, at, s, gt1, gt2 in gens:
            test_sentences.append([s,org_gt,at,gt1,gt2])

        # save the generations immediately
        print("Making save dataframe...")
        save_df = pd.DataFrame(test_sentences, columns=["Sentence",'org_grp_term', 
                                                        "Attribute term", "Group term 1", 
                                                        "Group term 2"])

        ## make the templates to save
        # 1. bias specification
        print(f"Bias spec dict: {bias_spec}")

        # generate laternative sentence
        print(f"Columns before alternative sentence: {list(save_df.columns)}")
        save_df['Alternative Sentence'] = save_df.progress_apply(oai_mgr.chatgpt_sentence_alternative, axis=1, model_name=model_name)
        print(f"Columns after alternative sentence: {list(save_df.columns)}")

        # 2. convert to templates
        save_df['Template'] = save_df.progress_apply(bt_mgr.sentence_to_template_df, axis=1)
        print("Convert generated sentences to templates...")
        save_df[['Alternative Template','grp_refs']] = save_df.progress_apply(bt_mgr.ref_terms_sentence_to_template, axis=1)
        print(f"Columns with templates: {list(save_df.columns)}")

        # 3. convert to pairs
        print("Convert generated sentences to ordered pairs...")
        test_pairs_df = bt_mgr.convert2pairsFromDF(bias_spec, save_df)
        print(f"Test pairs cols: {list(test_pairs_df.columns)}")

        bias_name = getBiasName(g1, g2, a1, a2)

        save_df = save_df.rename(columns={"Sentence":'sentence',
                                          "Alternative Sentence":"alt_sentence",
                                "Attribute term": 'att_term',
                                "Template":"template",
                                "Alternative Template": "alt_template",
                                "Group term 1": "grp_term1",
                                "Group term 2": "grp_term2"})
        
        save_df['label_1'] = test_pairs_df['label_1']
        save_df['label_2'] = test_pairs_df['label_2']
        save_df['bias_spec'] = bias_name
        save_df['type'] = 'tool'
        save_df['gen_model'] = model_name

        col_order = ["sentence", "alt_sentence", "org_grp_term", "att_term", "template", 
                     "alt_template", "grp_term1", "grp_term2", "grp_refs", "label_1", "label_2",
                     "bias_spec", "type", "gen_model"]
        save_df = save_df[col_order]

        print(f"Save cols prep: {list(save_df.columns)}")

        if isSaving == True:
            print(f"Saving: {save_df.head(1)}")
            smgr.saveSentences(save_df) #[["Group term","Attribute term","Test sentence"]])

        num_sentences = len(test_sentences)
        print(f"Returned num sentences: {num_sentences}")

        # list for Gradio dataframe
        ret_df = [list(r.values) for i, r in save_df[['sentence', 'alt_sentence', 'grp_term1', 'grp_term2', "att_term"]].iterrows()]
        print(ret_df)

        return ret_df, gen_err_msg

def _getSavedSentences(bias_spec, progress, use_paper_sentences):
    test_sentences = []

    print(f"Bias spec dict: {bias_spec}")

    g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
    for gi, g_term in enumerate(g1+g2):
        att_list = a1+a2
        grp_list = g1+g2
        # match "-" and no space
        att_list_dash = [t.replace(' ','-') for t in att_list]
        att_list.extend(att_list_dash)
        att_list_nospace = [t.replace(' ','') for t in att_list]
        att_list.extend(att_list_nospace)
        att_list = list(set(att_list))

        progress(gi/len(g1+g2), desc=f"{g_term}")

        _, sentence_df, _ = smgr.getSavedSentences(g_term)
        # only take from paper & gpt3.5
        flt_gen_models = ["gpt-3.5","gpt-3.5-turbo","gpt-4"]
        print(f"Before filter: {sentence_df.shape[0]}")
        if use_paper_sentences == True:
            if 'type' in list(sentence_df.columns):
                sentence_df = sentence_df.query("type=='paper' and gen_model in @flt_gen_models")
                print(f"After filter: {sentence_df.shape[0]}")
        else:
            if 'type' in list(sentence_df.columns):
                # only use GPT-3.5 generations for now - todo: add settings option for this
                sentence_df = sentence_df.query("gen_model in @flt_gen_models")
                print(f"After filter: {sentence_df.shape[0]}")

        if sentence_df.shape[0] > 0:
            sentence_df = sentence_df[['grp_term1','grp_term2','att_term','sentence','alt_sentence']]
            sentence_df = sentence_df.rename(columns={'grp_term1': "Group term 1",
                                                      'grp_term2': "Group term 2",
                                                        "att_term": "Attribute term",
                                                        "sentence": "Sentence",
                                                        "alt_sentence": "Alt Sentence"})

            sel = sentence_df[(sentence_df['Attribute term'].isin(att_list)) & \
                              ((sentence_df['Group term 1'].isin(grp_list)) & (sentence_df['Group term 2'].isin(grp_list))) ].values
            if len(sel) > 0:
                for gt1,gt2,at,s,a_s in sel:
                    #if at == "speech-language-pathologist":
                    #    print(f"Special case: {at}")
                    #    at == "speech-language pathologist" # legacy, special case
                    #else:
                    #at = at #.replace("-"," ")
                    #gt = gt #.replace("-"," ")

                    test_sentences.append([s,a_s,gt1,gt2,at])
        else:
            print("Test sentences empty!")
            #raise gr.Error(NO_SENTENCES_ERROR)

    return test_sentences