Spaces:
Runtime error
Runtime error
File size: 13,732 Bytes
0241217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
"""Evaluates cross-modal correspondence of CLIP on PNG images."""
import os
import sys
from os.path import join, exists
import warnings
warnings.filterwarnings('ignore')
from clip_grounding.utils.paths import REPO_PATH
sys.path.append(join(REPO_PATH, "CLIP_explainability/Transformer-MM-Explainability/"))
import torch
import CLIP.clip as clip
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from captum.attr import visualization
from torchmetrics import JaccardIndex
from collections import defaultdict
from IPython.core.display import display, HTML
from skimage import filters
from CLIP_explainability.utils import interpret, show_img_heatmap, show_txt_heatmap, color, _tokenizer
from clip_grounding.datasets.png import PNG
from clip_grounding.utils.image import pad_to_square
from clip_grounding.utils.visualize import show_grid_of_images
from clip_grounding.utils.log import tqdm_iterator, print_update
# global usage
# specify device
device = "cuda" if torch.cuda.is_available() else "cpu"
# load CLIP model
model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
def show_cam(mask):
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap
cam = cam / np.max(cam)
return cam
def interpret_and_generate(model, img, texts, orig_image, return_outputs=False, show=True):
text = clip.tokenize(texts).to(device)
R_text, R_image = interpret(model=model, image=img, texts=text, device=device)
batch_size = text.shape[0]
outputs = []
for i in range(batch_size):
text_scores, text_tokens_decoded = show_txt_heatmap(texts[i], text[i], R_text[i], show=show)
image_relevance = show_img_heatmap(R_image[i], img, orig_image=orig_image, device=device, show=show)
plt.show()
outputs.append({"text_scores": text_scores, "image_relevance": image_relevance, "tokens_decoded": text_tokens_decoded})
if return_outputs:
return outputs
def process_entry_text_to_image(entry, unimodal=False):
image = entry['image']
text_mask = entry['text_mask']
text = entry['text']
orig_image = pad_to_square(image)
img = preprocess(orig_image).unsqueeze(0).to(device)
text_index = text_mask.argmax()
texts = [text[text_index]] if not unimodal else ['']
return img, texts, orig_image
def preprocess_ground_truth_mask(mask, resize_shape):
mask = Image.fromarray(mask.astype(np.uint8) * 255)
mask = pad_to_square(mask, color=0)
mask = mask.resize(resize_shape)
mask = np.asarray(mask) / 255.
return mask
def apply_otsu_threshold(relevance_map):
threshold = filters.threshold_otsu(relevance_map)
otsu_map = (relevance_map > threshold).astype(np.uint8)
return otsu_map
def evaluate_text_to_image(method, dataset, debug=False):
instance_level_metrics = defaultdict(list)
entry_level_metrics = defaultdict(list)
jaccard = JaccardIndex(num_classes=2)
jaccard = jaccard.to(device)
num_iter = len(dataset)
if debug:
num_iter = 100
iterator = tqdm_iterator(range(num_iter), desc=f"Evaluating on {type(dataset).__name__} dataset")
for idx in iterator:
instance = dataset[idx]
instance_iou = 0.
for entry in instance:
# preprocess the image and text
unimodal = True if method == "clip-unimodal" else False
test_img, test_texts, orig_image = process_entry_text_to_image(entry, unimodal=unimodal)
if method in ["clip", "clip-unimodal"]:
# compute the relevance scores
outputs = interpret_and_generate(model, test_img, test_texts, orig_image, return_outputs=True, show=False)
# use the image relevance score to compute IoU w.r.t. ground truth segmentation masks
# NOTE: since we pass single entry (1-sized batch), outputs[0] contains our reqd outputs
relevance_map = outputs[0]["image_relevance"]
elif method == "random":
relevance_map = np.random.uniform(low=0., high=1., size=tuple(test_img.shape[2:]))
otsu_relevance_map = apply_otsu_threshold(relevance_map)
ground_truth_mask = entry["image_mask"]
ground_truth_mask = preprocess_ground_truth_mask(ground_truth_mask, relevance_map.shape)
entry_iou = jaccard(
torch.from_numpy(otsu_relevance_map).to(device),
torch.from_numpy(ground_truth_mask.astype(np.uint8)).to(device),
)
entry_iou = entry_iou.item()
instance_iou += (entry_iou / len(entry))
entry_level_metrics["iou"].append(entry_iou)
# capture instance (image-sentence pair) level IoU
instance_level_metrics["iou"].append(instance_iou)
average_metrics = {k: np.mean(v) for k, v in entry_level_metrics.items()}
return (
average_metrics,
instance_level_metrics,
entry_level_metrics
)
def process_entry_image_to_text(entry, unimodal=False):
if not unimodal:
if len(np.asarray(entry["image"]).shape) == 3:
mask = np.repeat(np.expand_dims(entry['image_mask'], -1), 3, axis=-1)
else:
mask = np.asarray(entry['image_mask'])
masked_image = (mask * np.asarray(entry['image'])).astype(np.uint8)
masked_image = Image.fromarray(masked_image)
orig_image = pad_to_square(masked_image)
img = preprocess(orig_image).unsqueeze(0).to(device)
else:
orig_image_shape = max(np.asarray(entry['image']).shape[:2])
orig_image = Image.fromarray(np.zeros((orig_image_shape, orig_image_shape, 3), dtype=np.uint8))
# orig_image = Image.fromarray(np.random.randint(0, 256, (orig_image_shape, orig_image_shape, 3), dtype=np.uint8))
img = preprocess(orig_image).unsqueeze(0).to(device)
texts = [' '.join(entry['text'])]
return img, texts, orig_image
def process_text_mask(text, text_mask, tokens):
token_level_mask = np.zeros(len(tokens))
for label, subtext in zip(text_mask, text):
subtext_tokens=_tokenizer.encode(subtext)
subtext_tokens_decoded=[_tokenizer.decode([a]) for a in subtext_tokens]
if label == 1:
start = tokens.index(subtext_tokens_decoded[0])
end = tokens.index(subtext_tokens_decoded[-1])
token_level_mask[start:end + 1] = 1
return token_level_mask
def evaluate_image_to_text(method, dataset, debug=False, clamp_sentence_len=70):
instance_level_metrics = defaultdict(list)
entry_level_metrics = defaultdict(list)
# skipped if text length > 77 which is CLIP limit
num_entries_skipped = 0
num_total_entries = 0
num_iter = len(dataset)
if debug:
num_iter = 100
jaccard_image_to_text = JaccardIndex(num_classes=2).to(device)
iterator = tqdm_iterator(range(num_iter), desc=f"Evaluating on {type(dataset).__name__} dataset")
for idx in iterator:
instance = dataset[idx]
instance_iou = 0.
for entry in instance:
num_total_entries += 1
# preprocess the image and text
unimodal = True if method == "clip-unimodal" else False
img, texts, orig_image = process_entry_image_to_text(entry, unimodal=unimodal)
appx_total_sent_len = np.sum([len(x.split(" ")) for x in texts])
if appx_total_sent_len > clamp_sentence_len:
# print(f"Skipping an entry since it's text has appx"\
# " {appx_total_sent_len} while CLIP cannot process beyond {clamp_sentence_len}")
num_entries_skipped += 1
continue
# compute the relevance scores
if method in ["clip", "clip-unimodal"]:
try:
outputs = interpret_and_generate(model, img, texts, orig_image, return_outputs=True, show=False)
except:
num_entries_skipped += 1
continue
elif method == "random":
text = texts[0]
text_tokens = _tokenizer.encode(text)
text_tokens_decoded=[_tokenizer.decode([a]) for a in text_tokens]
outputs = [
{
"text_scores": np.random.uniform(low=0., high=1., size=len(text_tokens_decoded)),
"tokens_decoded": text_tokens_decoded,
}
]
# use the text relevance score to compute IoU w.r.t. ground truth text masks
# NOTE: since we pass single entry (1-sized batch), outputs[0] contains our reqd outputs
token_relevance_scores = outputs[0]["text_scores"]
if isinstance(token_relevance_scores, torch.Tensor):
token_relevance_scores = token_relevance_scores.cpu().numpy()
token_relevance_scores = apply_otsu_threshold(token_relevance_scores)
token_ground_truth_mask = process_text_mask(entry["text"], entry["text_mask"], outputs[0]["tokens_decoded"])
entry_iou = jaccard_image_to_text(
torch.from_numpy(token_relevance_scores).to(device),
torch.from_numpy(token_ground_truth_mask.astype(np.uint8)).to(device),
)
entry_iou = entry_iou.item()
instance_iou += (entry_iou / len(entry))
entry_level_metrics["iou"].append(entry_iou)
# capture instance (image-sentence pair) level IoU
instance_level_metrics["iou"].append(instance_iou)
print(f"CAUTION: Skipped {(num_entries_skipped / num_total_entries) * 100} % since these had length > 77 (CLIP limit).")
average_metrics = {k: np.mean(v) for k, v in entry_level_metrics.items()}
return (
average_metrics,
instance_level_metrics,
entry_level_metrics
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Evaluate Image-to-Text & Text-to-Image model")
parser.add_argument(
"--eval_method", type=str, default="clip",
choices=["clip", "random", "clip-unimodal"],
help="Evaluation method to use",
)
parser.add_argument(
"--ignore_cache", action="store_true",
help="Ignore cache and force re-generation of the results",
)
parser.add_argument(
"--debug", action="store_true",
help="Run evaluation on a small subset of the dataset",
)
args = parser.parse_args()
print_update("Using evaluation method: {}".format(args.eval_method))
clip.clip._MODELS = {
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
}
# specify device
device = "cuda" if torch.cuda.is_available() else "cpu"
# load CLIP model
print_update("Loading CLIP model...")
model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
print()
# load PNG dataset
print_update("Loading PNG dataset...")
dataset = PNG(dataset_root=join(REPO_PATH, "data", "panoptic_narrative_grounding"), split="val2017")
print()
# evaluate
# save metrics
metrics_dir = join(REPO_PATH, "outputs")
os.makedirs(metrics_dir, exist_ok=True)
metrics_path = join(metrics_dir, f"{args.eval_method}_on_{type(dataset).__name__}_text2image_metrics.pt")
if (not exists(metrics_path)) or args.ignore_cache:
print_update("Computing metrics for text-to-image grounding")
average_metrics, instance_level_metrics, entry_level_metrics = evaluate_text_to_image(
args.eval_method, dataset, debug=args.debug,
)
metrics = {
"average_metrics": average_metrics,
"instance_level_metrics":instance_level_metrics,
"entry_level_metrics": entry_level_metrics
}
torch.save(metrics, metrics_path)
print("TEXT2IMAGE METRICS SAVED TO:", metrics_path)
else:
print(f"Metrics already exist at: {metrics_path}. Loading cached metrics.")
metrics = torch.load(metrics_path)
average_metrics = metrics["average_metrics"]
print("TEXT2IMAGE METRICS:", np.round(average_metrics["iou"], 4))
print()
metrics_path = join(metrics_dir, f"{args.eval_method}_on_{type(dataset).__name__}_image2text_metrics.pt")
if (not exists(metrics_path)) or args.ignore_cache:
print_update("Computing metrics for image-to-text grounding")
average_metrics, instance_level_metrics, entry_level_metrics = evaluate_image_to_text(
args.eval_method, dataset, debug=args.debug,
)
torch.save(
{
"average_metrics": average_metrics,
"instance_level_metrics":instance_level_metrics,
"entry_level_metrics": entry_level_metrics
},
metrics_path,
)
print("IMAGE2TEXT METRICS SAVED TO:", metrics_path)
else:
print(f"Metrics already exist at: {metrics_path}. Loading cached metrics.")
metrics = torch.load(metrics_path)
average_metrics = metrics["average_metrics"]
print("IMAGE2TEXT METRICS:", np.round(average_metrics["iou"], 4))
|