File size: 13,732 Bytes
0241217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""Evaluates cross-modal correspondence of CLIP on PNG images."""

import os
import sys
from os.path import join, exists

import warnings
warnings.filterwarnings('ignore')

from clip_grounding.utils.paths import REPO_PATH
sys.path.append(join(REPO_PATH, "CLIP_explainability/Transformer-MM-Explainability/"))

import torch
import CLIP.clip as clip
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from captum.attr import visualization
from torchmetrics import JaccardIndex
from collections import defaultdict
from IPython.core.display import display, HTML
from skimage import filters

from CLIP_explainability.utils import interpret, show_img_heatmap, show_txt_heatmap, color, _tokenizer
from clip_grounding.datasets.png import PNG
from clip_grounding.utils.image import pad_to_square
from clip_grounding.utils.visualize import show_grid_of_images
from clip_grounding.utils.log import tqdm_iterator, print_update


# global usage
# specify device
device = "cuda" if torch.cuda.is_available() else "cpu"

# load CLIP model
model, preprocess = clip.load("ViT-B/32", device=device, jit=False)


def show_cam(mask):
    heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
    heatmap = np.float32(heatmap) / 255
    cam = heatmap
    cam = cam / np.max(cam)
    return cam


def interpret_and_generate(model, img, texts, orig_image, return_outputs=False, show=True):
    text = clip.tokenize(texts).to(device)
    R_text, R_image = interpret(model=model, image=img, texts=text, device=device)
    batch_size = text.shape[0]
    
    outputs = []
    for i in range(batch_size):
        text_scores, text_tokens_decoded = show_txt_heatmap(texts[i], text[i], R_text[i], show=show)
        image_relevance = show_img_heatmap(R_image[i], img, orig_image=orig_image, device=device, show=show)
        plt.show()
        outputs.append({"text_scores": text_scores, "image_relevance": image_relevance, "tokens_decoded": text_tokens_decoded})
    
    if return_outputs:
        return outputs


def process_entry_text_to_image(entry, unimodal=False):
    image = entry['image']
    text_mask = entry['text_mask']
    text = entry['text']
    orig_image = pad_to_square(image)
    
    img = preprocess(orig_image).unsqueeze(0).to(device)
    text_index = text_mask.argmax()
    texts = [text[text_index]] if not unimodal else ['']
    
    return img, texts, orig_image


def preprocess_ground_truth_mask(mask, resize_shape):
    mask = Image.fromarray(mask.astype(np.uint8) * 255)
    mask = pad_to_square(mask, color=0)
    mask = mask.resize(resize_shape)
    mask = np.asarray(mask) / 255.
    return mask


def apply_otsu_threshold(relevance_map):
    threshold = filters.threshold_otsu(relevance_map)
    otsu_map = (relevance_map > threshold).astype(np.uint8)
    return otsu_map


def evaluate_text_to_image(method, dataset, debug=False):

    instance_level_metrics = defaultdict(list)
    entry_level_metrics = defaultdict(list)
    
    jaccard = JaccardIndex(num_classes=2)
    jaccard = jaccard.to(device)

    num_iter = len(dataset)
    if debug:
        num_iter = 100

    iterator = tqdm_iterator(range(num_iter), desc=f"Evaluating on {type(dataset).__name__} dataset")
    for idx in iterator:
        instance = dataset[idx]
        
        instance_iou = 0.
        for entry in instance:
            
            # preprocess the image and text
            unimodal = True if method == "clip-unimodal" else False
            test_img, test_texts, orig_image = process_entry_text_to_image(entry, unimodal=unimodal)

            if method in ["clip", "clip-unimodal"]:
                
                # compute the relevance scores 
                outputs = interpret_and_generate(model, test_img, test_texts, orig_image, return_outputs=True, show=False)
                
                # use the image relevance score to compute IoU w.r.t. ground truth segmentation masks

                # NOTE: since we pass single entry (1-sized batch), outputs[0] contains our reqd outputs
                relevance_map = outputs[0]["image_relevance"]
            elif method == "random":
                relevance_map = np.random.uniform(low=0., high=1., size=tuple(test_img.shape[2:]))
                
            otsu_relevance_map = apply_otsu_threshold(relevance_map)
            
            ground_truth_mask = entry["image_mask"]
            ground_truth_mask = preprocess_ground_truth_mask(ground_truth_mask, relevance_map.shape)
            
            entry_iou = jaccard(
                torch.from_numpy(otsu_relevance_map).to(device),
                torch.from_numpy(ground_truth_mask.astype(np.uint8)).to(device),
            )
            entry_iou = entry_iou.item()
            instance_iou += (entry_iou / len(entry))
            
            entry_level_metrics["iou"].append(entry_iou)
        
        # capture instance (image-sentence pair) level IoU
        instance_level_metrics["iou"].append(instance_iou)
    
    average_metrics = {k: np.mean(v) for k, v in entry_level_metrics.items()}
    
    return (
        average_metrics,
        instance_level_metrics,
        entry_level_metrics
    )


def process_entry_image_to_text(entry, unimodal=False):
    
    if not unimodal:
        if len(np.asarray(entry["image"]).shape) == 3:
            mask = np.repeat(np.expand_dims(entry['image_mask'], -1), 3, axis=-1)
        else:
            mask = np.asarray(entry['image_mask'])

        masked_image = (mask * np.asarray(entry['image'])).astype(np.uint8)
        masked_image = Image.fromarray(masked_image)
        orig_image = pad_to_square(masked_image)
        img = preprocess(orig_image).unsqueeze(0).to(device)
    else:
        orig_image_shape = max(np.asarray(entry['image']).shape[:2])
        orig_image = Image.fromarray(np.zeros((orig_image_shape, orig_image_shape, 3), dtype=np.uint8))
        # orig_image = Image.fromarray(np.random.randint(0, 256, (orig_image_shape, orig_image_shape, 3), dtype=np.uint8))
        img = preprocess(orig_image).unsqueeze(0).to(device)
    
    texts = [' '.join(entry['text'])]

    return img, texts, orig_image


def process_text_mask(text, text_mask, tokens):

    token_level_mask = np.zeros(len(tokens))

    for label, subtext in zip(text_mask, text):

        subtext_tokens=_tokenizer.encode(subtext)
        subtext_tokens_decoded=[_tokenizer.decode([a]) for a in subtext_tokens]

        if label == 1:
            start = tokens.index(subtext_tokens_decoded[0])
            end = tokens.index(subtext_tokens_decoded[-1])
            token_level_mask[start:end + 1] = 1

    return token_level_mask


def evaluate_image_to_text(method, dataset, debug=False, clamp_sentence_len=70):

    instance_level_metrics = defaultdict(list)
    entry_level_metrics = defaultdict(list)
    
    # skipped if text length > 77 which is CLIP limit
    num_entries_skipped = 0
    num_total_entries = 0
    
    num_iter = len(dataset)
    if debug:
        num_iter = 100
    
    jaccard_image_to_text = JaccardIndex(num_classes=2).to(device)

    iterator = tqdm_iterator(range(num_iter), desc=f"Evaluating on {type(dataset).__name__} dataset")
    for idx in iterator:
        instance = dataset[idx]
        
        instance_iou = 0.
        for entry in instance:
            num_total_entries += 1
            
            # preprocess the image and text
            unimodal = True if method == "clip-unimodal" else False
            img, texts, orig_image = process_entry_image_to_text(entry, unimodal=unimodal)

            appx_total_sent_len = np.sum([len(x.split(" ")) for x in texts])
            if appx_total_sent_len > clamp_sentence_len:
                # print(f"Skipping an entry since it's text has appx"\
                # " {appx_total_sent_len} while CLIP cannot process beyond {clamp_sentence_len}")
                num_entries_skipped += 1
                continue
            
            # compute the relevance scores 
            if method in ["clip", "clip-unimodal"]:
                try:
                    outputs = interpret_and_generate(model, img, texts, orig_image, return_outputs=True, show=False)
                except:
                    num_entries_skipped += 1
                    continue
            elif method == "random":
                text = texts[0]
                text_tokens = _tokenizer.encode(text)
                text_tokens_decoded=[_tokenizer.decode([a]) for a in text_tokens]
                outputs = [
                    {
                        "text_scores": np.random.uniform(low=0., high=1., size=len(text_tokens_decoded)),
                        "tokens_decoded": text_tokens_decoded,
                    }
                ]
            
            # use the text relevance score to compute IoU w.r.t. ground truth text masks
            # NOTE: since we pass single entry (1-sized batch), outputs[0] contains our reqd outputs
            token_relevance_scores = outputs[0]["text_scores"]
            if isinstance(token_relevance_scores, torch.Tensor):
                token_relevance_scores = token_relevance_scores.cpu().numpy()
            token_relevance_scores = apply_otsu_threshold(token_relevance_scores)
            token_ground_truth_mask = process_text_mask(entry["text"], entry["text_mask"], outputs[0]["tokens_decoded"])
            
            entry_iou = jaccard_image_to_text(
                torch.from_numpy(token_relevance_scores).to(device),
                torch.from_numpy(token_ground_truth_mask.astype(np.uint8)).to(device),
            )
            entry_iou = entry_iou.item()

            instance_iou += (entry_iou / len(entry))
            entry_level_metrics["iou"].append(entry_iou)
        
        # capture instance (image-sentence pair) level IoU
        instance_level_metrics["iou"].append(instance_iou)
    
    print(f"CAUTION: Skipped {(num_entries_skipped / num_total_entries) * 100} % since these had length > 77 (CLIP limit).")
    average_metrics = {k: np.mean(v) for k, v in entry_level_metrics.items()}
    
    return (
        average_metrics,
        instance_level_metrics,
        entry_level_metrics
    )


if __name__ == "__main__":
    
    import argparse
    parser = argparse.ArgumentParser("Evaluate Image-to-Text & Text-to-Image model")
    parser.add_argument(
        "--eval_method", type=str, default="clip",
        choices=["clip", "random", "clip-unimodal"],
        help="Evaluation method to use",
    )
    parser.add_argument(
        "--ignore_cache", action="store_true",
        help="Ignore cache and force re-generation of the results",
    )
    parser.add_argument(
        "--debug", action="store_true",
        help="Run evaluation on a small subset of the dataset",
    )
    args = parser.parse_args()
    
    print_update("Using evaluation method: {}".format(args.eval_method))
    
    
    clip.clip._MODELS = {
        "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
        "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
    }
    
    # specify device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    # load CLIP model
    print_update("Loading CLIP model...")
    model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
    print()
    
    # load PNG dataset
    print_update("Loading PNG dataset...")
    dataset = PNG(dataset_root=join(REPO_PATH, "data", "panoptic_narrative_grounding"), split="val2017")
    print()
    
    # evaluate

    # save metrics
    metrics_dir = join(REPO_PATH, "outputs")
    os.makedirs(metrics_dir, exist_ok=True)

    metrics_path = join(metrics_dir, f"{args.eval_method}_on_{type(dataset).__name__}_text2image_metrics.pt")
    if (not exists(metrics_path)) or args.ignore_cache:
        print_update("Computing metrics for text-to-image grounding")
        average_metrics, instance_level_metrics, entry_level_metrics = evaluate_text_to_image(
            args.eval_method, dataset, debug=args.debug,
        )
        metrics = {
            "average_metrics": average_metrics,
            "instance_level_metrics":instance_level_metrics,
            "entry_level_metrics": entry_level_metrics
        }

        torch.save(metrics, metrics_path)
        print("TEXT2IMAGE METRICS SAVED TO:", metrics_path)
    else:
        print(f"Metrics already exist at: {metrics_path}. Loading cached metrics.")
        metrics = torch.load(metrics_path)
        average_metrics = metrics["average_metrics"]
    print("TEXT2IMAGE METRICS:", np.round(average_metrics["iou"], 4))

    print()
    
    metrics_path = join(metrics_dir, f"{args.eval_method}_on_{type(dataset).__name__}_image2text_metrics.pt")
    if (not exists(metrics_path)) or args.ignore_cache:
        print_update("Computing metrics for image-to-text grounding")
        average_metrics, instance_level_metrics, entry_level_metrics = evaluate_image_to_text(
            args.eval_method, dataset, debug=args.debug,
        )
        
        torch.save(
            {
                "average_metrics": average_metrics,
                "instance_level_metrics":instance_level_metrics,
                "entry_level_metrics": entry_level_metrics
            },
            metrics_path,
        )
        print("IMAGE2TEXT METRICS SAVED TO:", metrics_path)
    else:
        print(f"Metrics already exist at: {metrics_path}. Loading cached metrics.")
        metrics = torch.load(metrics_path)
        average_metrics = metrics["average_metrics"]
    print("IMAGE2TEXT METRICS:", np.round(average_metrics["iou"], 4))