amirhosseinkarami commited on
Commit
80c53ff
·
1 Parent(s): dbdc0fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -1,8 +1,11 @@
1
  import gradio as gr
2
  from Recommender import Recommender
3
  from Preprocess import ModelUtils, Preprocess
 
 
4
 
5
- data_path = "data"
 
6
  model_path = "model_root"
7
 
8
  data = pd.read_csv(data_path)
@@ -14,16 +17,17 @@ p = Preprocess(model_path)
14
 
15
  data = pd.read_csv(data_path)
16
 
17
- rec = Recommender (4, 3, 0)
18
  k = 3
19
 
20
  table = [tuple(row) for row in data.to_numpy()]
21
 
22
  def recom (title) :
23
- rec.recommend_k(table, k, title)
 
 
24
 
25
  demo = gr.Interface(fn=recom,
26
- inputs=[gr.Dropdown(choices = list(desc['title'][:20]), multiselect=True, max_choices=3, label="Movies"),
27
- gr.Radio(["bert", "scibert", "nltk" , "none"], value="none", label="Tokenization and text preprocess")],
28
- outputs=gr.Textbox(label="Recommended"))
29
  demo.launch()
 
1
  import gradio as gr
2
  from Recommender import Recommender
3
  from Preprocess import ModelUtils, Preprocess
4
+ import numpy as np
5
+ import pandas as pd
6
 
7
+
8
+ data_path = "result.csv"
9
  model_path = "model_root"
10
 
11
  data = pd.read_csv(data_path)
 
17
 
18
  data = pd.read_csv(data_path)
19
 
20
+ rec = Recommender (0, 1, 2, 3, 4)
21
  k = 3
22
 
23
  table = [tuple(row) for row in data.to_numpy()]
24
 
25
  def recom (title) :
26
+ indices, scores, title_scores = rec.recommend_k(table, k, title)
27
+ out = list(data[indices]['title'])
28
+ return "\n".join(out)
29
 
30
  demo = gr.Interface(fn=recom,
31
+ inputs=[gr.Dropdown(choices = list(data['title'][:20]), multiselect=False, label="Titles")],
32
+ outputs=gr.Textbox(label="Titles of recommended items"), type='multiline')
 
33
  demo.launch()