amirhosseinkarami commited on
Commit
dbdc0fc
·
1 Parent(s): 6bd2e39

Update Recommender.py

Browse files
Files changed (1) hide show
  1. Recommender.py +5 -3
Recommender.py CHANGED
@@ -3,9 +3,11 @@ import pandas as pd
3
  from sklearn.metrics.pairwise import cosine_similarity
4
 
5
  class Recommender :
6
- def __init__(self, title_vec_col, content_vec_col, id_col):
7
  self.title_vec_col = title_vec_col
8
  self.content_vec_col = content_vec_col
 
 
9
  self.id_col = id_col
10
 
11
  def calculate_recom_scores (self, k, similarities) :
@@ -56,10 +58,10 @@ class Recommender :
56
 
57
  # return result[self.id_col, :].tolist()
58
 
59
- def recommend_k(self, table, k, id):
60
 
61
  data = np.array(list(zip(*table)))
62
- idx = int(data[0][data[self.id_col] == id].item())
63
 
64
  titles = self.str2arr(data[self.title_vec_col, :])
65
  contents = self.str2arr(data[self.content_vec_col, :])
 
3
  from sklearn.metrics.pairwise import cosine_similarity
4
 
5
  class Recommender :
6
+ def __init__(self, id_col, title_col, content_col, title_vec_col, content_vec_col):
7
  self.title_vec_col = title_vec_col
8
  self.content_vec_col = content_vec_col
9
+ self.title_col = title_col
10
+ self.content_col = content_col
11
  self.id_col = id_col
12
 
13
  def calculate_recom_scores (self, k, similarities) :
 
58
 
59
  # return result[self.id_col, :].tolist()
60
 
61
+ def recommend_k(self, table, k, title):
62
 
63
  data = np.array(list(zip(*table)))
64
+ idx = int(data[0][data[self.title_col] == title].item())
65
 
66
  titles = self.str2arr(data[self.title_vec_col, :])
67
  contents = self.str2arr(data[self.content_vec_col, :])