translateEn2FR / ch09util.py
amiguel's picture
Upload 2 files
d66dc94 verified
import torch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
import numpy as np
def subsequent_mask(size):
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape),
k=1).astype('uint8')
output = torch.from_numpy(subsequent_mask) == 0
return output
def make_std_mask(tgt, pad):
tgt_mask=(tgt != pad).unsqueeze(-2)
output=tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)
return output
# define the Batch class
class Batch:
def __init__(self, src, trg=None, pad=0):
src = torch.from_numpy(src).to(DEVICE).long()
self.src = src
self.src_mask = (src != pad).unsqueeze(-2)
if trg is not None:
trg = torch.from_numpy(trg).to(DEVICE).long()
self.trg = trg[:, :-1]
self.trg_y = trg[:, 1:]
self.trg_mask = make_std_mask(self.trg, pad)
self.ntokens = (self.trg_y != pad).data.sum()
from torch import nn
# An encoder-decoder transformer
class Transformer(nn.Module):
def __init__(self, encoder, decoder,
src_embed, tgt_embed, generator):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt),
memory, src_mask, tgt_mask)
def forward(self, src, tgt, src_mask, tgt_mask):
memory = self.encode(src, src_mask)
output = self.decode(memory, src_mask, tgt, tgt_mask)
return output
# Create an encoder
from copy import deepcopy
class Encoder(nn.Module):
def __init__(self, layer, N):
super().__init__()
self.layers = nn.ModuleList(
[deepcopy(layer) for i in range(N)])
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
output = self.norm(x)
return output
class EncoderLayer(nn.Module):
def __init__(self, size, self_attn, feed_forward, dropout):
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = nn.ModuleList([deepcopy(
SublayerConnection(size, dropout)) for i in range(2)])
self.size = size
def forward(self, x, mask):
x = self.sublayer[0](
x, lambda x: self.self_attn(x, x, x, mask))
output = self.sublayer[1](x, self.feed_forward)
return output
class SublayerConnection(nn.Module):
def __init__(self, size, dropout):
super().__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
output = x + self.dropout(sublayer(self.norm(x)))
return output
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super().__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
x_zscore = (x - mean) / torch.sqrt(std ** 2 + self.eps)
output = self.a_2*x_zscore+self.b_2
return output
# Create a decoder
class Decoder(nn.Module):
def __init__(self, layer, N):
super().__init__()
self.layers = nn.ModuleList(
[deepcopy(layer) for i in range(N)])
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
output = self.norm(x)
return output
class DecoderLayer(nn.Module):
def __init__(self, size, self_attn, src_attn,
feed_forward, dropout):
super().__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = nn.ModuleList([deepcopy(
SublayerConnection(size, dropout)) for i in range(3)])
def forward(self, x, memory, src_mask, tgt_mask):
x = self.sublayer[0](x, lambda x:
self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x:
self.src_attn(x, memory, memory, src_mask))
output = self.sublayer[2](x, self.feed_forward)
return output
# create the model
def create_model(src_vocab, tgt_vocab, N, d_model,
d_ff, h, dropout=0.1):
attn=MultiHeadedAttention(h, d_model).to(DEVICE)
ff=PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
pos=PositionalEncoding(d_model, dropout).to(DEVICE)
model = Transformer(
Encoder(EncoderLayer(d_model,deepcopy(attn),deepcopy(ff),
dropout).to(DEVICE),N).to(DEVICE),
Decoder(DecoderLayer(d_model,deepcopy(attn),
deepcopy(attn),deepcopy(ff), dropout).to(DEVICE),
N).to(DEVICE),
nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE),
deepcopy(pos)),
nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE),
deepcopy(pos)),
Generator(d_model, tgt_vocab)).to(DEVICE)
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model.to(DEVICE)
import math
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super().__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
out = self.lut(x) * math.sqrt(self.d_model)
return out
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model, device=DEVICE)
position = torch.arange(0., max_len,
device=DEVICE).unsqueeze(1)
div_term = torch.exp(torch.arange(
0., d_model, 2, device=DEVICE)
* -(math.log(10000.0) / d_model))
pe_pos = torch.mul(position, div_term)
pe[:, 0::2] = torch.sin(pe_pos)
pe[:, 1::2] = torch.cos(pe_pos)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)].requires_grad_(False)
out = self.dropout(x)
return out
def attention(query, key, value, mask=None, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query,
key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = nn.functional.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
super().__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.linears = nn.ModuleList([deepcopy(
nn.Linear(d_model, d_model)) for i in range(4)])
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = query.size(0)
query, key, value = [l(x).view(nbatches, -1, self.h,
self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
x, self.attn = attention(
query, key, value, mask=mask, dropout=self.dropout)
x = x.transpose(1, 2).contiguous().view(
nbatches, -1, self.h * self.d_k)
output = self.linears[-1](x)
return output
class Generator(nn.Module):
def __init__(self, d_model, vocab):
super().__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
out = self.proj(x)
probs = nn.functional.log_softmax(out, dim=-1)
return probs
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
h1 = self.w_1(x)
h2 = self.dropout(h1)
return self.w_2(h2)
class LabelSmoothing(nn.Module):
def __init__(self, size, padding_idx, smoothing=0.1):
super().__init__()
self.criterion = nn.KLDivLoss(reduction='sum')
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = size
self.true_dist = None
def forward(self, x, target):
assert x.size(1) == self.size
true_dist = x.data.clone()
true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.scatter_(1,
target.data.unsqueeze(1), self.confidence)
true_dist[:, self.padding_idx] = 0
mask = torch.nonzero(target.data == self.padding_idx)
if mask.dim() > 0:
true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
output = self.criterion(x, true_dist.clone().detach())
return output
class SimpleLossCompute:
def __init__(self, generator, criterion, opt=None):
self.generator = generator
self.criterion = criterion
self.opt = opt
def __call__(self, x, y, norm):
x = self.generator(x)
loss = self.criterion(x.contiguous().view(-1, x.size(-1)),
y.contiguous().view(-1)) / norm
loss.backward()
if self.opt is not None:
self.opt.step()
self.opt.optimizer.zero_grad()
return loss.data.item() * norm.float()
class NoamOpt:
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step=None):
if step is None:
step = self._step
output = self.factor * (self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
return output