import torch DEVICE = "cuda" if torch.cuda.is_available() else "cpu" import numpy as np def subsequent_mask(size): attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') output = torch.from_numpy(subsequent_mask) == 0 return output def make_std_mask(tgt, pad): tgt_mask=(tgt != pad).unsqueeze(-2) output=tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data) return output # define the Batch class class Batch: def __init__(self, src, trg=None, pad=0): src = torch.from_numpy(src).to(DEVICE).long() self.src = src self.src_mask = (src != pad).unsqueeze(-2) if trg is not None: trg = torch.from_numpy(trg).to(DEVICE).long() self.trg = trg[:, :-1] self.trg_y = trg[:, 1:] self.trg_mask = make_std_mask(self.trg, pad) self.ntokens = (self.trg_y != pad).data.sum() from torch import nn # An encoder-decoder transformer class Transformer(nn.Module): def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): super().__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask): return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) def forward(self, src, tgt, src_mask, tgt_mask): memory = self.encode(src, src_mask) output = self.decode(memory, src_mask, tgt, tgt_mask) return output # Create an encoder from copy import deepcopy class Encoder(nn.Module): def __init__(self, layer, N): super().__init__() self.layers = nn.ModuleList( [deepcopy(layer) for i in range(N)]) self.norm = LayerNorm(layer.size) def forward(self, x, mask): for layer in self.layers: x = layer(x, mask) output = self.norm(x) return output class EncoderLayer(nn.Module): def __init__(self, size, self_attn, feed_forward, dropout): super().__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = nn.ModuleList([deepcopy( SublayerConnection(size, dropout)) for i in range(2)]) self.size = size def forward(self, x, mask): x = self.sublayer[0]( x, lambda x: self.self_attn(x, x, x, mask)) output = self.sublayer[1](x, self.feed_forward) return output class SublayerConnection(nn.Module): def __init__(self, size, dropout): super().__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): output = x + self.dropout(sublayer(self.norm(x))) return output class LayerNorm(nn.Module): def __init__(self, features, eps=1e-6): super().__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) x_zscore = (x - mean) / torch.sqrt(std ** 2 + self.eps) output = self.a_2*x_zscore+self.b_2 return output # Create a decoder class Decoder(nn.Module): def __init__(self, layer, N): super().__init__() self.layers = nn.ModuleList( [deepcopy(layer) for i in range(N)]) self.norm = LayerNorm(layer.size) def forward(self, x, memory, src_mask, tgt_mask): for layer in self.layers: x = layer(x, memory, src_mask, tgt_mask) output = self.norm(x) return output class DecoderLayer(nn.Module): def __init__(self, size, self_attn, src_attn, feed_forward, dropout): super().__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = nn.ModuleList([deepcopy( SublayerConnection(size, dropout)) for i in range(3)]) def forward(self, x, memory, src_mask, tgt_mask): x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, memory, memory, src_mask)) output = self.sublayer[2](x, self.feed_forward) return output # create the model def create_model(src_vocab, tgt_vocab, N, d_model, d_ff, h, dropout=0.1): attn=MultiHeadedAttention(h, d_model).to(DEVICE) ff=PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE) pos=PositionalEncoding(d_model, dropout).to(DEVICE) model = Transformer( Encoder(EncoderLayer(d_model,deepcopy(attn),deepcopy(ff), dropout).to(DEVICE),N).to(DEVICE), Decoder(DecoderLayer(d_model,deepcopy(attn), deepcopy(attn),deepcopy(ff), dropout).to(DEVICE), N).to(DEVICE), nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE), deepcopy(pos)), nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE), deepcopy(pos)), Generator(d_model, tgt_vocab)).to(DEVICE) for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model.to(DEVICE) import math class Embeddings(nn.Module): def __init__(self, d_model, vocab): super().__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): out = self.lut(x) * math.sqrt(self.d_model) return out class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout, max_len=5000): super().__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model, device=DEVICE) position = torch.arange(0., max_len, device=DEVICE).unsqueeze(1) div_term = torch.exp(torch.arange( 0., d_model, 2, device=DEVICE) * -(math.log(10000.0) / d_model)) pe_pos = torch.mul(position, div_term) pe[:, 0::2] = torch.sin(pe_pos) pe[:, 1::2] = torch.cos(pe_pos) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1)].requires_grad_(False) out = self.dropout(x) return out def attention(query, key, value, mask=None, dropout=None): d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = nn.functional.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): super().__init__() assert d_model % h == 0 self.d_k = d_model // h self.h = h self.linears = nn.ModuleList([deepcopy( nn.Linear(d_model, d_model)) for i in range(4)]) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): if mask is not None: mask = mask.unsqueeze(1) nbatches = query.size(0) query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] x, self.attn = attention( query, key, value, mask=mask, dropout=self.dropout) x = x.transpose(1, 2).contiguous().view( nbatches, -1, self.h * self.d_k) output = self.linears[-1](x) return output class Generator(nn.Module): def __init__(self, d_model, vocab): super().__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, x): out = self.proj(x) probs = nn.functional.log_softmax(out, dim=-1) return probs class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, d_ff, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): h1 = self.w_1(x) h2 = self.dropout(h1) return self.w_2(h2) class LabelSmoothing(nn.Module): def __init__(self, size, padding_idx, smoothing=0.1): super().__init__() self.criterion = nn.KLDivLoss(reduction='sum') self.padding_idx = padding_idx self.confidence = 1.0 - smoothing self.smoothing = smoothing self.size = size self.true_dist = None def forward(self, x, target): assert x.size(1) == self.size true_dist = x.data.clone() true_dist.fill_(self.smoothing / (self.size - 2)) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) true_dist[:, self.padding_idx] = 0 mask = torch.nonzero(target.data == self.padding_idx) if mask.dim() > 0: true_dist.index_fill_(0, mask.squeeze(), 0.0) self.true_dist = true_dist output = self.criterion(x, true_dist.clone().detach()) return output class SimpleLossCompute: def __init__(self, generator, criterion, opt=None): self.generator = generator self.criterion = criterion self.opt = opt def __call__(self, x, y, norm): x = self.generator(x) loss = self.criterion(x.contiguous().view(-1, x.size(-1)), y.contiguous().view(-1)) / norm loss.backward() if self.opt is not None: self.opt.step() self.opt.optimizer.zero_grad() return loss.data.item() * norm.float() class NoamOpt: def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def rate(self, step=None): if step is None: step = self._step output = self.factor * (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))) return output