sayakpaul's picture
sayakpaul HF staff
remove cuda().
1d5ecf3
raw
history blame
3.51 kB
import argparse
import numpy as np
import torch
from numpy import *
# compute rollout between attention layers
def compute_rollout_attention(all_layer_matrices, start_layer=0):
# adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow
num_tokens = all_layer_matrices[0].shape[1]
batch_size = all_layer_matrices[0].shape[0]
eye = (
torch.eye(num_tokens)
.expand(batch_size, num_tokens, num_tokens)
.to(all_layer_matrices[0].device)
)
all_layer_matrices = [
all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))
]
matrices_aug = [
all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
for i in range(len(all_layer_matrices))
]
joint_attention = matrices_aug[start_layer]
for i in range(start_layer + 1, len(matrices_aug)):
joint_attention = matrices_aug[i].bmm(joint_attention)
return joint_attention
class LRP:
def __init__(self, model):
self.model = model
self.model.eval()
def generate_LRP(
self,
input,
index=None,
method="transformer_attribution",
is_ablation=False,
start_layer=0,
):
output = self.model(input)
kwargs = {"alpha": 1}
if index == None:
index = np.argmax(output.cpu().data.numpy(), axis=-1)
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0, index] = 1
one_hot_vector = one_hot
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
one_hot = torch.sum(one_hot * output)
self.model.zero_grad()
one_hot.backward(retain_graph=True)
return self.model.relprop(
torch.tensor(one_hot_vector).to(input.device),
method=method,
is_ablation=is_ablation,
start_layer=start_layer,
**kwargs
)
class Baselines:
def __init__(self, model):
self.model = model
self.model.eval()
def generate_cam_attn(self, input, index=None):
output = self.model(input, register_hook=True)
if index == None:
index = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][index] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
one_hot = torch.sum(one_hot * output)
self.model.zero_grad()
one_hot.backward(retain_graph=True)
#################### attn
grad = self.model.blocks[-1].attn.get_attn_gradients()
cam = self.model.blocks[-1].attn.get_attention_map()
cam = cam[0, :, 0, 1:].reshape(-1, 14, 14)
grad = grad[0, :, 0, 1:].reshape(-1, 14, 14)
grad = grad.mean(dim=[1, 2], keepdim=True)
cam = (cam * grad).mean(0).clamp(min=0)
cam = (cam - cam.min()) / (cam.max() - cam.min())
return cam
#################### attn
def generate_rollout(self, input, start_layer=0):
self.model(input)
blocks = self.model.blocks
all_layer_attentions = []
for blk in blocks:
attn_heads = blk.attn.get_attention_map()
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
all_layer_attentions.append(avg_heads)
rollout = compute_rollout_attention(
all_layer_attentions, start_layer=start_layer
)
return rollout[:, 0, 1:]