comparative-explainability
/
Transformer-Explainability
/baselines
/ViT
/ViT_explanation_generator.py
import argparse | |
import numpy as np | |
import torch | |
from numpy import * | |
# compute rollout between attention layers | |
def compute_rollout_attention(all_layer_matrices, start_layer=0): | |
# adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow | |
num_tokens = all_layer_matrices[0].shape[1] | |
batch_size = all_layer_matrices[0].shape[0] | |
eye = ( | |
torch.eye(num_tokens) | |
.expand(batch_size, num_tokens, num_tokens) | |
.to(all_layer_matrices[0].device) | |
) | |
all_layer_matrices = [ | |
all_layer_matrices[i] + eye for i in range(len(all_layer_matrices)) | |
] | |
matrices_aug = [ | |
all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) | |
for i in range(len(all_layer_matrices)) | |
] | |
joint_attention = matrices_aug[start_layer] | |
for i in range(start_layer + 1, len(matrices_aug)): | |
joint_attention = matrices_aug[i].bmm(joint_attention) | |
return joint_attention | |
class LRP: | |
def __init__(self, model): | |
self.model = model | |
self.model.eval() | |
def generate_LRP( | |
self, | |
input, | |
index=None, | |
method="transformer_attribution", | |
is_ablation=False, | |
start_layer=0, | |
): | |
output = self.model(input) | |
kwargs = {"alpha": 1} | |
if index == None: | |
index = np.argmax(output.cpu().data.numpy(), axis=-1) | |
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) | |
one_hot[0, index] = 1 | |
one_hot_vector = one_hot | |
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | |
one_hot = torch.sum(one_hot * output) | |
self.model.zero_grad() | |
one_hot.backward(retain_graph=True) | |
return self.model.relprop( | |
torch.tensor(one_hot_vector).to(input.device), | |
method=method, | |
is_ablation=is_ablation, | |
start_layer=start_layer, | |
**kwargs | |
) | |
class Baselines: | |
def __init__(self, model): | |
self.model = model | |
self.model.eval() | |
def generate_cam_attn(self, input, index=None): | |
output = self.model(input, register_hook=True) | |
if index == None: | |
index = np.argmax(output.cpu().data.numpy()) | |
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) | |
one_hot[0][index] = 1 | |
one_hot = torch.from_numpy(one_hot).requires_grad_(True) | |
one_hot = torch.sum(one_hot * output) | |
self.model.zero_grad() | |
one_hot.backward(retain_graph=True) | |
#################### attn | |
grad = self.model.blocks[-1].attn.get_attn_gradients() | |
cam = self.model.blocks[-1].attn.get_attention_map() | |
cam = cam[0, :, 0, 1:].reshape(-1, 14, 14) | |
grad = grad[0, :, 0, 1:].reshape(-1, 14, 14) | |
grad = grad.mean(dim=[1, 2], keepdim=True) | |
cam = (cam * grad).mean(0).clamp(min=0) | |
cam = (cam - cam.min()) / (cam.max() - cam.min()) | |
return cam | |
#################### attn | |
def generate_rollout(self, input, start_layer=0): | |
self.model(input) | |
blocks = self.model.blocks | |
all_layer_attentions = [] | |
for blk in blocks: | |
attn_heads = blk.attn.get_attention_map() | |
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() | |
all_layer_attentions.append(avg_heads) | |
rollout = compute_rollout_attention( | |
all_layer_attentions, start_layer=start_layer | |
) | |
return rollout[:, 0, 1:] | |