import argparse import numpy as np import torch from numpy import * # compute rollout between attention layers def compute_rollout_attention(all_layer_matrices, start_layer=0): # adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow num_tokens = all_layer_matrices[0].shape[1] batch_size = all_layer_matrices[0].shape[0] eye = ( torch.eye(num_tokens) .expand(batch_size, num_tokens, num_tokens) .to(all_layer_matrices[0].device) ) all_layer_matrices = [ all_layer_matrices[i] + eye for i in range(len(all_layer_matrices)) ] matrices_aug = [ all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) for i in range(len(all_layer_matrices)) ] joint_attention = matrices_aug[start_layer] for i in range(start_layer + 1, len(matrices_aug)): joint_attention = matrices_aug[i].bmm(joint_attention) return joint_attention class LRP: def __init__(self, model): self.model = model self.model.eval() def generate_LRP( self, input, index=None, method="transformer_attribution", is_ablation=False, start_layer=0, ): output = self.model(input) kwargs = {"alpha": 1} if index == None: index = np.argmax(output.cpu().data.numpy(), axis=-1) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0, index] = 1 one_hot_vector = one_hot one_hot = torch.from_numpy(one_hot).requires_grad_(True) one_hot = torch.sum(one_hot * output) self.model.zero_grad() one_hot.backward(retain_graph=True) return self.model.relprop( torch.tensor(one_hot_vector).to(input.device), method=method, is_ablation=is_ablation, start_layer=start_layer, **kwargs ) class Baselines: def __init__(self, model): self.model = model self.model.eval() def generate_cam_attn(self, input, index=None): output = self.model(input, register_hook=True) if index == None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0][index] = 1 one_hot = torch.from_numpy(one_hot).requires_grad_(True) one_hot = torch.sum(one_hot * output) self.model.zero_grad() one_hot.backward(retain_graph=True) #################### attn grad = self.model.blocks[-1].attn.get_attn_gradients() cam = self.model.blocks[-1].attn.get_attention_map() cam = cam[0, :, 0, 1:].reshape(-1, 14, 14) grad = grad[0, :, 0, 1:].reshape(-1, 14, 14) grad = grad.mean(dim=[1, 2], keepdim=True) cam = (cam * grad).mean(0).clamp(min=0) cam = (cam - cam.min()) / (cam.max() - cam.min()) return cam #################### attn def generate_rollout(self, input, start_layer=0): self.model(input) blocks = self.model.blocks all_layer_attentions = [] for blk in blocks: attn_heads = blk.attn.get_attention_map() avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() all_layer_attentions.append(avg_heads) rollout = compute_rollout_attention( all_layer_attentions, start_layer=start_layer ) return rollout[:, 0, 1:]