File size: 4,485 Bytes
b39298d
6f4225b
 
b39298d
6f4225b
 
 
 
34ef943
b39298d
6f4225b
 
b39298d
7f2419c
6fc35ba
6f4225b
 
d04a9f1
 
6f4225b
 
 
 
 
 
 
 
b39298d
6f4225b
 
 
b39298d
6f4225b
 
 
b39298d
6f4225b
 
 
 
 
b39298d
6f4225b
 
 
 
 
b39298d
6f4225b
 
 
 
 
 
c87b467
6f4225b
 
 
 
 
 
 
 
6fc35ba
6f4225b
 
5454d65
6fc35ba
 
 
 
 
 
1d758a2
34ef943
 
 
 
 
b369983
1d758a2
6f4225b
0b805c3
6f4225b
1d758a2
 
 
 
5454d65
5b9bb83
5454d65
 
1d758a2
 
6f4225b
1d758a2
 
6f4225b
 
 
 
 
1d758a2
 
 
5454d65
 
1d758a2
6306631
5454d65
1d758a2
56619bc
226625a
5454d65
34ef943
 
 
226625a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import streamlit as st
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from dotenv import load_dotenv
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import os
import base64
import time

# Load environment variables
load_dotenv()

icons = {"assistant": "robot.png", "user": "man-kddi.png"}

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3900,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=1000,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "./db"
DATA_DIR = "data"

# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

def displayPDF(file):
    with open(file, "rb") as f:
        base64_pdf = base64.b64encode(f.read()).decode('utf-8')
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
    st.markdown(pdf_display, unsafe_allow_html=True)

def data_ingestion():
    documents = SimpleDirectoryReader(DATA_DIR).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    chat_text_qa_msgs = [
    (
        "user",
        """You are Q&A assistant named CHATTO, created by Pachaiappan an AI Specialist. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
        Context:
        {context_str}
        Question:
        {query_str}
        """
    )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    query_engine = index.as_query_engine(text_qa_template=text_qa_template)
    answer = query_engine.query(query)
    
    
    if hasattr(answer, 'response'):
        return answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        return answer['response']
    else:
        return "Sorry, I couldn't find an answer."

def streamer(text):
    for i in text:
        yield i
        time.sleep(0.01)


# Streamlit app initialization
st.title("Chat with your PDF 🦜📄")
st.markdown("Built by [Pachaiappan❤️](https://github.com/Mr-Vicky-01)")
st.markdown("chat here👇")

if 'messages' not in st.session_state:
    st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]

for message in st.session_state.messages:
    with st.chat_message(message['role'], avatar=icons[message['role']]):
        st.write(message['content'])

with st.sidebar:
    st.title("Menu:")
    uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
    if st.button("Submit & Process"):
        with st.spinner("Processing..."):
            filepath = "data/saved_pdf.pdf"
            with open(filepath, "wb") as f:
                f.write(uploaded_file.getbuffer())
            # displayPDF(filepath)  # Display the uploaded PDF
            data_ingestion()  # Process PDF every time new file is uploaded
            st.success("Done")

user_prompt = st.chat_input("Ask me anything about the content of the PDF:")

if user_prompt and uploaded_file:
    st.session_state.messages.append({'role': 'user', "content": user_prompt})
    with st.chat_message("user", avatar="man-kddi.png"):
        st.write(user_prompt)

    # Trigger assistant's response retrieval and update UI
    with st.spinner("Thinking..."):
        response = handle_query(user_prompt)
    with st.chat_message("user", avatar="robot.png"):
        st.write_stream(streamer(response))
    st.session_state.messages.append({'role': 'assistant', "content": response})