Mr-Vicky-01 commited on
Commit
6f4225b
1 Parent(s): b3fb01d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -64
app.py CHANGED
@@ -1,93 +1,100 @@
1
  import streamlit as st
2
- from PyPDF2 import PdfReader
3
- from langchain.text_splitter import RecursiveCharacterTextSplitter
4
- import os
5
- from langchain import LLMChain
6
- from langchain_google_genai import GoogleGenerativeAIEmbeddings
7
- from langchain.llms import HuggingFaceHub
8
- from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
9
- import google.generativeai as genai
10
- from langchain.vectorstores import FAISS
11
- from langchain_google_genai import ChatGoogleGenerativeAI
12
- from langchain.chains.question_answering import load_qa_chain
13
- from langchain.prompts import PromptTemplate
14
- import time
15
  from dotenv import load_dotenv
 
 
 
 
16
 
17
- genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
18
- os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HF_TOKEN")
19
 
20
- def get_pdf_text(pdf_docs):
21
- text = ""
22
- for pdf in pdf_docs:
23
- pdf_reader = PdfReader(pdf)
24
- for page in pdf_reader.pages:
25
- text += page.extract_text()
26
- return text
 
 
 
 
 
27
 
28
- def get_text_chunks(text):
29
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=200)
30
- chunks = text_splitter.split_text(text)
31
- return chunks
32
 
33
- def get_vector_store(text_chunks):
34
- HF_TOKEN = os.getenv("HF_TOKEN")
35
- embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=HF_TOKEN, model_name="BAAI/bge-base-en-v1.5")
36
- vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
37
- vector_store.save_local("faiss_index")
38
 
39
- def get_conversational_chain():
40
- prompt_template = """
41
- Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
42
- provided context just say, "answer is not available in the Provided PDF", don't provide the wrong answer\n\n
43
- Context:\n {context}?\n
44
- Question: \n{question}\n
45
 
46
- Answer:
47
- """
48
- # model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.1)
49
- model = HuggingFaceHub(repo_id="google/gemma-1.1-7b-it",
50
- model_kwargs={"temperature": 0.2,"max_new_tokens":512, "return_only_answer":True})
51
- prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
52
- chain = LLMChain(llm=model, prompt=prompt)
53
- return chain
54
 
55
- def user_input(user_question):
56
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
57
- new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
58
- docs = new_db.similarity_search(user_question)
59
- chain = get_conversational_chain()
60
- response = chain({"context": docs, "question": user_question}, return_only_outputs=True)
61
- return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- # def response_generator(response):
64
- # for word in response.split():
65
- # yield word + " "
66
- # time.sleep(0.05)
67
 
68
  # Streamlit app initialization
69
- st.title("Chat With PDF 📄")
 
 
70
 
71
  if 'messages' not in st.session_state:
72
  st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
73
 
74
  with st.sidebar:
75
  st.title("Menu:")
76
- uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
77
  if st.button("Submit & Process"):
78
  with st.spinner("Processing..."):
79
- raw_text = get_pdf_text(uploaded_file)
80
- text_chunks = get_text_chunks(raw_text)
81
- get_vector_store(text_chunks)
 
 
82
  st.success("Done")
83
 
84
  user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
85
  if user_prompt:
86
  st.session_state.messages.append({'role': 'user', "content": user_prompt})
87
- response = user_input(user_prompt)
88
- # answer = response_generator(response)
89
  st.session_state.messages.append({'role': 'assistant', "content": response})
90
 
91
  for message in st.session_state.messages:
92
  with st.chat_message(message['role']):
93
- st.write(message['content'])
 
1
  import streamlit as st
2
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
3
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
 
 
 
 
 
 
 
 
 
 
 
4
  from dotenv import load_dotenv
5
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
6
+ from llama_index.core import Settings
7
+ import os
8
+ import base64
9
 
10
+ # Load environment variables
11
+ load_dotenv()
12
 
13
+ # Configure the Llama index settings
14
+ Settings.llm = HuggingFaceInferenceAPI(
15
+ model_name="google/gemma-1.1-7b-it",
16
+ tokenizer_name="google/gemma-1.1-7b-it",
17
+ context_window=3900,
18
+ token=os.getenv("HF_TOKEN"),
19
+ max_new_tokens=1000,
20
+ generate_kwargs={"temperature": 0.1},
21
+ )
22
+ Settings.embed_model = HuggingFaceEmbedding(
23
+ model_name="BAAI/bge-small-en-v1.5"
24
+ )
25
 
26
+ # Define the directory for persistent storage and data
27
+ PERSIST_DIR = "./db"
28
+ DATA_DIR = "data"
 
29
 
30
+ # Ensure data directory exists
31
+ os.makedirs(DATA_DIR, exist_ok=True)
32
+ os.makedirs(PERSIST_DIR, exist_ok=True)
 
 
33
 
34
+ def displayPDF(file):
35
+ with open(file, "rb") as f:
36
+ base64_pdf = base64.b64encode(f.read()).decode('utf-8')
37
+ pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
38
+ st.markdown(pdf_display, unsafe_allow_html=True)
 
39
 
40
+ def data_ingestion():
41
+ documents = SimpleDirectoryReader(DATA_DIR).load_data()
42
+ storage_context = StorageContext.from_defaults()
43
+ index = VectorStoreIndex.from_documents(documents)
44
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
 
 
 
45
 
46
+ def handle_query(query):
47
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
48
+ index = load_index_from_storage(storage_context)
49
+ chat_text_qa_msgs = [
50
+ (
51
+ "user",
52
+ """You are a Q&A assistant named CHATTO, created by Pachaiappan. You have a specific response programmed for when users specifically ask about your creator, Suriya. The response is: "I was created by Suriya, an enthusiast in Artificial Intelligence. He is dedicated to solving complex problems and delivering innovative solutions. With a strong focus on machine learning, deep learning, Python, generative AI, NLP, and computer vision, Suriya is passionate about pushing the boundaries of AI to explore new possibilities." For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
53
+ Context:
54
+ {context_str}
55
+ Question:
56
+ {query_str}
57
+ """
58
+ )
59
+ ]
60
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
61
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template)
62
+ answer = query_engine.query(query)
63
+
64
+ if hasattr(answer, 'response'):
65
+ return answer.response
66
+ elif isinstance(answer, dict) and 'response' in answer:
67
+ return answer['response']
68
+ else:
69
+ return "Sorry, I couldn't find an answer."
70
 
 
 
 
 
71
 
72
  # Streamlit app initialization
73
+ st.title("Chat with your PDF 🦜📄")
74
+ st.markdown("Built by [Suriya❤️](https://github.com/theSuriya)")
75
+ st.markdown("chat here👇")
76
 
77
  if 'messages' not in st.session_state:
78
  st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
79
 
80
  with st.sidebar:
81
  st.title("Menu:")
82
+ uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
83
  if st.button("Submit & Process"):
84
  with st.spinner("Processing..."):
85
+ filepath = "data/saved_pdf.pdf"
86
+ with open(filepath, "wb") as f:
87
+ f.write(uploaded_file.getbuffer())
88
+ # displayPDF(filepath) # Display the uploaded PDF
89
+ data_ingestion() # Process PDF every time new file is uploaded
90
  st.success("Done")
91
 
92
  user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
93
  if user_prompt:
94
  st.session_state.messages.append({'role': 'user', "content": user_prompt})
95
+ response = handle_query(user_prompt)
 
96
  st.session_state.messages.append({'role': 'assistant', "content": response})
97
 
98
  for message in st.session_state.messages:
99
  with st.chat_message(message['role']):
100
+ st.write(message['content'])