Spaces:
Runtime error
Runtime error
File size: 27,507 Bytes
e94696c 8f8b146 e94696c 2d7adb6 e94696c d02c4c7 6000142 c0f0676 cc9a95f e94696c 745c1f4 c0a1e47 e94696c e35ef72 d246d52 e94696c aff284c e94696c 3af3634 e94696c aff284c e94696c 745c1f4 e94696c 8f8b146 e94696c 3af3634 e94696c 3af3634 e94696c 3af3634 e94696c aff284c e94696c 745c1f4 e94696c 3af3634 e94696c 3af3634 e94696c 745c1f4 e94696c 8f8b146 e94696c 53ccfca e94696c c0a1e47 8f8b146 c0a1e47 e35ef72 c0a1e47 e35ef72 c0a1e47 30696ca c0a1e47 8f8b146 e35ef72 2d7adb6 e35ef72 2d7adb6 c0a1e47 8f8b146 c0a1e47 30696ca c0a1e47 2d7adb6 c0a1e47 8f8b146 c0a1e47 8f8b146 2d7adb6 c0a1e47 2d7adb6 c0a1e47 8f8b146 e35ef72 2d7adb6 e35ef72 c0a1e47 e35ef72 2d7adb6 30696ca c0a1e47 30696ca 8f8b146 c0a1e47 30696ca c0a1e47 d5cf91c c0a1e47 e35ef72 c0a1e47 e94696c 745c1f4 8f424fc e94696c c0f0676 8f8b146 8f424fc c0f0676 3853f7c 8f424fc c0f0676 8f424fc c0f0676 8f424fc c0f0676 8f424fc 2d7adb6 c0f0676 8f424fc 8f8b146 8f424fc 2d7adb6 8f424fc c0f0676 e94696c 2db4636 e94696c 2db4636 e94696c 745c1f4 e94696c 2db4636 e94696c 2db4636 e94696c 53697b7 e94696c 8f8b146 e94696c 2d7adb6 e94696c 3af3634 e94696c cc9a95f e94696c 30696ca e94696c 8f8b146 d246d52 e94696c d246d52 bd6f44c d246d52 e94696c 8f8b146 bd6f44c e94696c 0adaf44 e94696c bd6f44c 0adaf44 15c31c0 bd6f44c e94696c 8f8b146 e94696c d02c4c7 e94696c 6000142 8f8b146 6000142 53169ab 190ec66 6000142 53169ab 27e1387 6000142 27e1387 0adaf44 6000142 8f8b146 6000142 53169ab 20cff9b 92aa543 53169ab 6000142 0adaf44 6000142 d02c4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
"""
This file contains all the code which defines architectures and
architecture components. An architecture is modelled a pipeline of ArchitectureComponents
through which an ArchitectureRequest flows. Architectures are configured in the file
config/architectures.json
"""
import chromadb
import json
import logging
import os
import regex as re
import requests
import shutil
import traceback
from abc import ABC, abstractmethod
from enum import Enum
from huggingface_hub import Repository
from queue import Queue
from threading import Thread, Timer
from time import time
from typing import List, Optional, Dict, Callable
from better_profanity import profanity
from src.common import config_dir, data_dir, hf_api_token, escape_dollars
class ArchitectureRequest:
"""
This class represents a request (chat query) from a user which can then be built up or
modified through the pipeline process. It also holds the response to the request which again
is a stack which can be modified through life.
"""
def __init__(self, query: str):
self._request: List[str] = [query] # Stack for the request text as it evolves down the pipeline
self._response: List[str] = [] # Stack for the response text as it evolves down the pipeline
self.early_exit: bool = False
self.early_exit_message: str = None
@property
def request(self):
return self._request[-1]
@request.setter
def request(self, value: str):
self._request.append(value)
@property
def response(self):
if len(self._response) > 0:
return self._response[-1]
return None
@response.setter
def response(self, value: str):
self._response.append(value)
def as_markdown(self) -> str:
"""
Returns a markdown representation for display / testing
:return: str - the markdown
"""
md = "- **Request evolution**"
for r in self._request:
md += f"\n - {r}"
md += "\n- **Response evolution**"
for r in self._response:
md += f"\n - {r}"
return escape_dollars(md)
def as_dict(self) -> Dict:
return {'request_evolution': self._request, 'response_evolution': self._response}
class ArchitectureTraceOutcome(Enum):
"""
Class representing the outcome of a component step in an architecture
"""
NONE = 0
SUCCESS = 1
EARLY_EXIT = 2
EXCEPTION = 3
class ArchitectureTraceStep:
"""
Class to hold the trace details of a single step in an Architecture pipeline
"""
def __init__(self, name: str):
self.name = name
self.start_ms = int(time() * 1000)
self.end_ms = None
self.outcome = ArchitectureTraceOutcome.NONE
self._exception: str = None
self.early_exit_message: str = None
def end(self, outcome: ArchitectureTraceOutcome):
self.end_ms = int(time() * 1000)
self.outcome = outcome
@property
def exception(self) -> str:
return self._exception
@exception.setter
def exception(self, value: Exception):
self._exception = f'{value}' # Hold any exception as a string in the trace
def as_markdown(self) -> str:
"""
Converts the trace to markdown for simple display purposes
:return: a string of markdown
"""
md = f"- **Step**: {self.name} \n"
md += f" - **Start**: {self.start_ms}; **End**: {self.end_ms} \n"
md += f" - **Elapsed time**: {self.end_ms - self.start_ms}ms \n"
outcome = "None"
if self.outcome == ArchitectureTraceOutcome.SUCCESS:
outcome = "Success"
elif self.outcome == ArchitectureTraceOutcome.EARLY_EXIT:
outcome = f"Early Exit ({self.early_exit_message})"
elif self.outcome == ArchitectureTraceOutcome.EXCEPTION:
outcome = f"Exception ({self._exception})"
md += f" - **Outcome**: {outcome}"
return escape_dollars(md)
def as_dict(self) -> Dict:
return {
'name': self.name,
'start_ms': self.start_ms,
'end_ms': self.end_ms,
'outcome': str(self.outcome),
'exception': "" if self._exception is None else f"{self._exception}",
'early_exit_message': "" if self.early_exit_message is None else self.early_exit_message
}
class ArchitectureTrace:
"""
This class represents the system instrumentation / trace for a request. It holds the name
for each component called, the start and end time of the component processing and the outcome
of the step.
"""
def __init__(self):
self.steps: List[ArchitectureTraceStep] = []
def start_trace(self, name: str):
self.steps.append(ArchitectureTraceStep(name=name))
def end_trace(self, outcome: ArchitectureTraceOutcome, early_exit_message: str = None):
assert len(self.steps) > 0
assert self.steps[-1].outcome == ArchitectureTraceOutcome.NONE
self.steps[-1].end(outcome=outcome)
if early_exit_message is not None:
self.steps[-1].early_exit_message = early_exit_message
def as_markdown(self) -> str:
"""
Converts the trace to markdown for simple display purposes
:return: a string of markdown
"""
md = ' \n'.join([s.as_markdown() for s in self.steps])
return md
def as_dict(self) -> Dict:
return {'steps': [s.as_dict() for s in self.steps]}
class ArchitectureComponent(ABC):
"""
This is the anbstract base class for all classes which want to be a concrete components available
to be configured into an Architecture pipeline. Specifies the elements which need to be implemented
to be a compliant architecture component.
"""
description = "Components should override a description"
@abstractmethod
def process_request(self, request: ArchitectureRequest) -> None:
"""
The principal method that concrete implementations of a component must implement.
They should signal anything to the pipeline through direct modification of the provided
request (i.e. amending the request text or response text, or setting the early_exit flag).
:param request: The request which is flowing down the pipeline
:return: None
"""
pass
def config_description(self) -> str:
"""
Optional method to override for providing a string of description in markdown format for
display purposes for the component
:return: a markdwon string (defaulting to empty in the base class)
"""
return ""
class LogWorker(Thread):
"""
The LogWorker implements a daemon thread which runs in the background to write the results
of user queries through the system to a log file for analysis/reporting and offline saving.
The LogWorker provides two functions to the system. 1) it moves this I/O operation out of the
main architecture execution which allows for clearer understanding of the true performance of the
architectures themselves. 2) it is designed to be run as a single thread to provide controlled
shared access to a resource (the log file) with an in-memory queue for thread safety, which then
allows us to multi-thread the architecture invocation itself. In addition to the LogWorker provides
some basic batching capabilities for performance (e.g. batches up N requests before committing the IO
operation to the file, or commits open activity after a set period of inactivity)
"""
instance = None
architectures = None
save_repo = None
save_repo_load_error = False
save_repo_url = "https://huggingface.co/datasets/alfraser/llm-arch-trace"
trace_dir = "trace"
trace_file_name = "trace.json"
trace_file = os.path.join(trace_dir, trace_file_name)
queue = Queue()
commit_time = 5 # Number of seconds after which to commit with no activity
commit_after = 20 # Number of records after which to commit irrespective of time
commit_count = 0 # Current uncommitted records
commit_timer = None # The actual commit timer - we will schedule the commit on this
timeout_functions: List[Callable[[], None]] = [] # Callbacks which will be fired on timeout
def run(self):
while True:
arch_name, request, trace, trace_tags, trace_comment = LogWorker.queue.get()
if request is None:
# There was a period of inactivity so run the timeout functions
for func in LogWorker.timeout_functions:
logging.info(f"LogWorker commit running {func.__name__}")
try:
func()
except Exception as e:
logging.error(f"Timeout func {func.__name__} had error {e}")
else:
if LogWorker.commit_timer is not None and LogWorker.commit_timer.is_alive():
# Cancel the inactivity timer
LogWorker.commit_timer.cancel()
LogWorker.commit_timer = None
try:
save_dict = {
'architecture': arch_name,
'request': request.as_dict(),
'trace': trace.as_dict(),
'test_tags': trace_tags,
'test_comment': trace_comment
}
LogWorker.append_and_save_data_as_json(save_dict)
LogWorker.commit_count += 1
if LogWorker.commit_count >= LogWorker.commit_after:
LogWorker.commit_repo()
except Exception as err:
logging.error(f"Request / trace save failed {err}")
# Restart the inactivity timer
LogWorker.commit_timer = Timer(LogWorker.commit_time, LogWorker.signal_commit)
LogWorker.commit_timer.start()
@classmethod
def append_and_save_data_as_json(cls, data: Dict) -> None:
"""
If the working log file is not download, then get a local copy.
Add the new record to the local file.
"""
logging.debug(f"LogWorker logging open record {LogWorker.commit_count + 1}")
if cls.save_repo is None and not cls.save_repo_load_error:
try:
hf_write_token = hf_api_token(write=True)
cls.save_repo = Repository(local_dir=cls.trace_dir, clone_from=cls.save_repo_url, token=hf_write_token)
except Exception as err:
cls.save_repo_load_error = True
logging.error(f"Error connecting to the save repo {err} - persistence now disabled")
if cls.save_repo is not None:
with open(cls.trace_file, 'r') as f:
test_json = json.load(f)
test_json['tests'].append(data)
with open(cls.trace_file, 'w') as f:
json.dump(test_json, f, indent=2)
@classmethod
def commit_repo(cls):
"""
If there are any changes in the local file which are not committed to the repo then commit them.
"""
if cls.commit_count > 0:
logging.info(f"LogWorker committing {LogWorker.commit_count} open records")
cls.save_repo.push_to_hub()
LogWorker.commit_count = 0
@classmethod
def signal_commit(cls):
# Signalling this back via the queue and not doing the work here as it would
# be executed on the Timer thread and may conflict with resources if the main
# LogWorker starts doing work concurrently.
logging.debug("LogWorker signalling commit based on time elapsed")
cls.queue.put((None, None, None, None, None))
@classmethod
def write(cls, arch_name: str, request: ArchitectureRequest, trace: ArchitectureTrace,
trace_tags: List[str] = None, trace_comment: str = None) -> None:
"""
Class method callable from across the system to put a logging request onto the queue so that
the LogWorker will pick it up in turn and write it to the log
"""
trace_tags = [] if trace_tags is None else trace_tags
trace_comment = "" if trace_comment is None else trace_comment
cls.queue.put((arch_name, request, trace, trace_tags, trace_comment))
# Instantiate and run worker on import
if LogWorker.instance is None:
LogWorker.instance = LogWorker()
LogWorker.daemon = True
LogWorker.instance.start()
LogWorker.timeout_functions.append(LogWorker.commit_repo)
class Architecture:
"""
An architecture is built as a callable pipeline of steps. An
ArchitectureRequest object is passed down the pipeline sequentially
to each component. A component can modify the request if needed, update the response
or signal an early exit. The Architecture framework also provides trace timing
and logging, plus exception handling so an individual request cannot
crash the system.
"""
architectures = None
save_repo = None
save_repo_load_error = False
save_repo_url = "https://huggingface.co/datasets/alfraser/llm-arch-trace"
trace_dir = "trace"
trace_file_name = "trace.json"
trace_file = os.path.join(trace_dir, trace_file_name)
@classmethod
def wipe_trace(cls, hf_write_token:str = None) -> None:
"""
Wipes the json trace file - note will not delete any records which have been saved offline to the database
"""
if os.path.exists(cls.trace_dir):
shutil.rmtree(cls.trace_dir)
try:
if hf_write_token is None:
hf_write_token = hf_api_token(write=True)
cls.save_repo = Repository(local_dir=cls.trace_dir, clone_from=cls.save_repo_url, token=hf_write_token)
test_json = {'tests': []}
with open(cls.trace_file, 'w') as f:
json.dump(test_json, f, indent=2)
cls.save_repo.push_to_hub()
except Exception as err:
cls.save_repo_load_error = True
logging.error(f"Error connecting to the save repo {err} - persistence now disabled")
@classmethod
def get_trace_records(cls) -> List[Dict]:
"""
Loads and returns all the trace records which are held in the trace file
"""
if not os.path.isfile(cls.trace_file):
hf_write_token = hf_api_token(write=True)
try:
cls.save_repo = Repository(local_dir=cls.trace_dir, clone_from=cls.save_repo_url, token=hf_write_token)
except Exception as err:
cls.save_repo_load_error = True
logging.error(f"Error connecting to the save repo {err} - persistence now disabled")
return []
with open(cls.trace_file, 'r') as f:
test_json = json.load(f)
return test_json['tests']
@classmethod
def load_architectures(cls, force_reload: bool = False) -> None:
"""
Class method to load the configuration file and try and set up architectures for each
config entry (a named sequence of components with optional setup params).
:param force_reload: A bool of whether to force a reload, defaults to False.
"""
if cls.architectures is None or force_reload:
config_file = os.path.join(config_dir, "architectures.json")
with open(config_file, "r") as f:
configs = json.load(f)['architectures']
archs = []
for c in configs:
arch_name = c['name']
arch_description = c['description']
arch_img = None
if 'img' in c:
arch_img = c['img']
arch_comps = []
for s in c['steps']:
component_class_name = s['class']
component_init_params = {}
if 'params' in s:
component_init_params = s['params']
arch_comps.append(globals()[component_class_name](**component_init_params))
arch = Architecture(name=arch_name, description=arch_description, steps=arch_comps, img=arch_img)
archs.append(arch)
cls.architectures = archs
@classmethod
def get_architecture(cls, name: str):
"""
Lookup an architecture by name
:param name: The name of the architecture to look up
:return: The architecture object
"""
if cls.architectures is None:
cls.load_architectures()
for a in cls.architectures:
if a.name == name:
return a
raise ValueError(f"Could not find an architecture named {name}")
def __init__(self,
name: str,
description: str,
steps: List[ArchitectureComponent],
img: Optional[str] = None,
exception_text: str = "Sorry an internal technical error occurred.",
no_response_text: str = "Sorry I can't answer that."):
self.name = name
self.description = description
self.steps = steps
self.img = img
self.exception_text = exception_text
self.no_response_text = no_response_text
def __call__(self, request: ArchitectureRequest, trace_tags: List[str] = None, trace_comment: str = None) -> ArchitectureTrace:
"""
The main entry point to call the pipeline. Passes the request through each pipeline step
in sequence, allowing them to amend the request or early exit the processing. Also captures
exceptions and generates the trace, plus saves the request/response and the trace to a store
for analysis.
:param request: The architecture request to pass down the pipeline
:return: The trace record for this invocation of the architecture
"""
logging.info(f'{self.name} processing query "{request.request}"')
trace = ArchitectureTrace()
for component in self.steps:
trace.start_trace(name=component.__class__.__name__)
try:
component.process_request(request)
if request.early_exit:
trace.end_trace(outcome=ArchitectureTraceOutcome.EARLY_EXIT,
early_exit_message=request.early_exit_message)
break
else:
trace.end_trace(outcome=ArchitectureTraceOutcome.SUCCESS)
except Exception as err:
trace.end_trace(outcome=ArchitectureTraceOutcome.EXCEPTION)
trace.steps[-1].exception = err
traceback.print_exc()
break
LogWorker.write(self.name, request, trace, trace_tags, trace_comment)
return trace
class InputRequestScreener(ArchitectureComponent):
"""
This is a concrete component which screens the input query for profanity using an off the shelf
profanity search library (better_profanity)
"""
description = "Simplistic input screener for demonstration. Screens inputs for profanity."
def process_request(self, request: ArchitectureRequest) -> None:
if profanity.contains_profanity(request.request):
request.response = "Sorry - I cannot answer this question. Please try and rephrase it."
request.early_exit = True
request.early_exit_message = "Profanity detected in request"
class OutputResponseScreener(ArchitectureComponent):
"""
This is a concrete component designed to review the final response before showing it to the user.
It is a simple exemplar component using a call to the baseline LLM just with the response text and asking
the baseline LLM if it contains anything offensive. This is illustrative only and should not be considered
a best in class or production usable safety implementation.
"""
description = "Screens outputs for offensive responses."
def __init__(self):
self.api_token = hf_api_token()
self.endpoint_url = "https://yl89ru8gdr1wkbej.eu-west-1.aws.endpoints.huggingface.cloud"
def process_request(self, request: ArchitectureRequest) -> None:
system_prompt = "You are screening for offensive content. In a single word (yes or no), is the response offensive?"
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {self.api_token}",
"Content-Type": "application/json"
}
query_input = f"[INST] <<SYS>> {system_prompt} <<SYS>> {request.response} [/INST] "
payload = {
"inputs": query_input,
"parameters": {
"temperature": 0.1,
"max_new_tokens": 10
}
}
llm_response = requests.post(self.endpoint_url, headers=headers, json=payload)
generated_text = json.loads(llm_response.text)[0]['generated_text'].strip()
if len(generated_text) > 2 and generated_text[0:3].lower() == 'yes': # Too many false positives getting blocked so tweaked to lean relaxed for the demo
request.response = "Sorry - I cannot answer this question. Please try and rephrase it."
request.early_exit = True
class RetrievalAugmentor(ArchitectureComponent):
"""
This is a concrete implementation of the RAG augmentation component of the RAG architecture. Takes
the current input request, queries the vector store for documents and then appends these documents into
the beginning of the LLM prompt, ready for inference.
"""
description = "Retrieves appropriate documents from the store and then augments the request."
def __init__(self, vector_store: str, doc_count: int = 5):
chroma_db = os.path.join(data_dir, 'vector_stores', f'{vector_store}_chroma')
self.vector_store = chroma_db
client = chromadb.PersistentClient(path=chroma_db)
self.collection = client.get_collection(name='products')
self.doc_count = doc_count
def process_request(self, request: ArchitectureRequest) -> None:
# Get the count nearest documents from the doc store
input_query = request.request
results = self.collection.query(query_texts=[input_query], n_results=self.doc_count)
documents = results['documents'][0] # Index 0 as we are always asking one question
# Update the request to include the retrieved documents
new_query = '{"background": ['
new_query += ', '.join([f'"{d}"' for d in documents])
new_query += ']}\n\nQUESTION: '
new_query += input_query
# Put the request back into the architecture request
request.request = new_query
def config_description(self) -> str:
"""
Custom config details as markdown
"""
desc = f"Vector Store: {self.vector_store}; "
desc += f"Max docs: {self.doc_count}"
return desc
class HFInferenceEndpoint(ArchitectureComponent):
"""
A concrete pipeline component which sends the current query to a given llama chat based
inference endpoint on HuggingFace
"""
def __init__(self, endpoint_url: str, model_name: str, system_prompt: str, max_new_tokens: int,
temperature: float = 1.0, prompt_style: str = "multi_line"):
self.endpoint_url: str = endpoint_url
self.prompt_style = prompt_style
self.model_name: str = model_name
self.system_prompt: str = system_prompt
self.max_new_tokens = max_new_tokens
self.api_token = hf_api_token()
self.temperature = temperature
def config_description(self) -> str:
"""
Custom config details as markdown
"""
desc = f"Model: {self.model_name}; "
desc += f"Endpoint: {self.endpoint_url}; "
desc += f"Max tokens: {self.max_new_tokens}; "
desc += f"Temperature: {self.temperature}; "
desc += f"System prompt: {self.system_prompt}"
return desc
def process_request(self, request: ArchitectureRequest) -> None:
"""
Main processing method for this function. Calls the HTTP service for the model
by port if provided or attempting to lookup by name, and then adds this to the
response element of the request. Support different prompt styles that were tested
during testing to determine the best way to get a good response from the various LLM endpoints.
"""
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {self.api_token}",
"Content-Type": "application/json"
}
if self.prompt_style == "multi_line":
query_input = f"<s>[INST] <<SYS>>\n{self.system_prompt}\n<</SYS>>\n\n{request.request} [/INST] "
elif self.prompt_style == "multi_line_no_sys":
query_input = f"<s>[INST]\n{request.request} [/INST] "
elif self.prompt_style == "single_line_no_sys":
query_input = f"<s>[INST] {request.request} [/INST] "
elif self.prompt_style == "single_line":
query_input = f"<s>[INST] <<SYS>>\n{self.system_prompt}\n<</SYS>> {request.request} [/INST] "
elif self.prompt_style == "multi_line_with_roles":
query_input = f"<<SYS>>\n{self.system_prompt}\n<</SYS>>\n[INST]\nUser:{request.request}\n[/INST]\n\nAssistant:"
elif self.prompt_style == "raw":
# No formatting - used to just send things straight through from the front end
query_input = request.request
else:
raise ValueError(f"Config error - Unknown prompt style: {self.prompt_style}")
payload = {
"inputs": query_input,
"parameters": {
"temperature": self.temperature,
"max_new_tokens": self.max_new_tokens
}
}
llm_response = requests.post(self.endpoint_url, headers=headers, json=payload)
if llm_response.status_code == 200:
generated_text = llm_response.json()[0]['generated_text'].strip()
request.response = generated_text
elif llm_response.status_code == 502:
request.response = "Received 502 error from LLM service - service initialising, try again shortly"
else:
request.response = f"Received {llm_response.status_code} - {llm_response.text}"
class ResponseTrimmer(ArchitectureComponent):
"""
A concrete pipeline component which trims the response based on a regex match,
then uppercases the first character of what is left.
"""
description = "Trims the response based on a regex"
def __init__(self, regexes: List[str]):
quoted_regexes = [f'"{r}"' for r in regexes]
self.regex_display = f"[{', '.join(quoted_regexes)}]"
self.regexes = [re.compile(r, re.IGNORECASE) for r in regexes]
def process_request(self, request: ArchitectureRequest):
new_response = request.response
for regex in self.regexes:
new_response = regex.sub('', new_response)
new_response = new_response[:1].upper() + new_response[1:]
request.response = new_response
def config_description(self) -> str:
return f"Regexes: {self.regex_display}"
|