Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline ,AutoencoderTiny | |
import torch | |
from diffusers import AutoencoderTiny, StableDiffusionPipeline , DPMSolverMultistepScheduler ,EulerDiscreteScheduler | |
from huggingface_hub import login | |
import os | |
a=os.getenv('hf_key') | |
login(token=a ) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
model_repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
""" | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) ###### это потом если что удалить "nota-ai/bk-sdm-small", | |
""" | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
negative_prompt1= """normal quality, low quality, low res, blurry, distortion, text, watermark, | |
logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch, duplicate, ugly, | |
monochrome, horror, geometry, mutation, disgusting, bad anatomy, bad proportions, bad quality, deformed, | |
disconnected limbs, out of frame, out of focus, dehydrated, disfigured, extra arms, extra limbs, extra hands, | |
fused fingers, gross proportions, long neck, jpeg, malformed limbs, mutated, mutated hands, mutated limbs, | |
missing arms, missing fingers, picture frame, poorly drawn hands, poorly drawn face, collage, pixel, pixelated, | |
grainy, color aberration, amputee, autograph, bad illustration, beyond the borders, blank background, | |
body out of frame, boring background, branding, cut off, dismembered, disproportioned, distorted, draft, | |
duplicated features, extra fingers, extra legs, fault, flaw, grains, hazy, identifying mark, | |
improper scale, incorrect physiology, incorrect ratio, indistinct, kitsch, low resolution, macabre, | |
malformed, mark, misshapen, missing hands, missing legs, mistake, morbid, mutilated, off-screen, | |
outside the picture, poorly drawn feet, printed words, render, repellent, replicate, reproduce, | |
revolting dimensions, script, shortened, sign, split image, squint, storyboard, | |
tiling, trimmed, unfocused, unattractive, unnatural pose, unreal engine, unsightly, written language""" | |
var_1="nota-ai/bk-sdm-base-2m" | |
var_2="nota-ai/bk-sdm-small" | |
pipe = DiffusionPipeline.from_pretrained( | |
var_2, torch_dtype=torch_dtype, use_safetensors=True) | |
#pipe.vae = AutoencoderTiny.from_pretrained( | |
# "sayakpaul/taesd-diffusers", torch_dtype=torch_dtype, use_safetensors=True) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
print(pipe.scheduler.compatibles) | |
#pipe.load_lora_weights("Natural_Flaccid_Penis.safetensors") | |
pipe = pipe.to(device) | |
pipe.enable_vae_tiling() | |
#[uncomment to use ZeroGPU] | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed | |
examples = ["""cinematic ,Two burly, middle-aged Turkish daddies—thick-mustached, | |
salt-and-pepper-haired, with barrel chests and round, | |
hairy bellies spilling from snug white briefs—lounge on a couch, | |
flexing meaty biceps and thick thighs. The camera, propped on a tripod, | |
captures their playful vlog as they smirk, | |
teasing the lens with deep chuckles and exaggerated poses. Sunlight glints off sweat-sheened skin, | |
their robust physiques shifting with every boastful stretch—biceps bulging, | |
bellies jiggling—while thick fingers adjust the phone, framing their confident, flirtatious display.8k""" | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
"huge muscle man , big penis , dick " | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=8, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=8.0, # Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, # Replace with defaults that work for your model | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |