File size: 7,024 Bytes
a462035
 
 
 
f058d4e
f09d947
a462035
3763fe0
f058d4e
 
3a86174
f058d4e
 
a462035
f2e0f06
 
7599e27
a462035
06d24b9
a462035
 
 
 
06d24b9
45fd33c
caa7526
4a0a156
 
a462035
 
 
 
 
4a260d9
 
cd8299a
4a260d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa22698
 
4a260d9
4a0a156
f09d947
507e675
a812d05
 
3763fe0
33c5c0a
700805d
4a0a156
90a23cb
8914a53
1a79597
50c370f
a462035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc76d6
a462035
 
 
 
 
 
 
 
 
 
ceca5bc
eb6d250
 
 
 
 
 
 
a462035
 
227e548
a462035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c731a91
a462035
 
 
 
 
 
 
d4dfcc5
a462035
 
 
 
 
 
 
 
 
 
d4dfcc5
a462035
 
 
 
 
 
 
d4dfcc5
a462035
 
 
 
 
 
 
 
4a73b1c
a462035
 
 
 
 
 
 
eb6d250
a462035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
import numpy as np
import random

import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline ,AutoencoderTiny
import torch
from diffusers import AutoencoderTiny, StableDiffusionPipeline , DPMSolverMultistepScheduler ,EulerDiscreteScheduler
from huggingface_hub import login
import os 
a=os.getenv('hf_key')
login(token=a )

device = "cuda" if torch.cuda.is_available() else "cpu"
#model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use
model_repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"



if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32
"""
    pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)   ###### это потом если что удалить "nota-ai/bk-sdm-small",
"""


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024




negative_prompt1= """normal quality, low quality, low res, blurry, distortion, text, watermark,
logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch, duplicate, ugly,
monochrome, horror, geometry, mutation, disgusting, bad anatomy, bad proportions, bad quality, deformed,
disconnected limbs, out of frame, out of focus, dehydrated, disfigured, extra arms, extra limbs, extra hands,
fused fingers, gross proportions, long neck, jpeg, malformed limbs, mutated, mutated hands, mutated limbs, 
missing arms, missing fingers, picture frame, poorly drawn hands, poorly drawn face, collage, pixel, pixelated,
grainy, color aberration, amputee, autograph, bad illustration, beyond the borders, blank background,
body out of frame, boring background, branding, cut off, dismembered, disproportioned, distorted, draft,
duplicated features, extra fingers, extra legs, fault, flaw, grains, hazy, identifying mark,
improper scale, incorrect physiology, incorrect ratio, indistinct, kitsch, low resolution, macabre,
malformed, mark, misshapen, missing hands, missing legs, mistake, morbid, mutilated, off-screen,
outside the picture, poorly drawn feet, printed words, render, repellent, replicate, reproduce,
revolting dimensions, script, shortened, sign, split image, squint, storyboard,
tiling, trimmed, unfocused, unattractive, unnatural pose, unreal engine, unsightly, written language"""





var_1="nota-ai/bk-sdm-base-2m"
var_2="nota-ai/bk-sdm-small"


pipe = DiffusionPipeline.from_pretrained(
     var_2, torch_dtype=torch_dtype, use_safetensors=True)
#pipe.vae = AutoencoderTiny.from_pretrained(
#    "sayakpaul/taesd-diffusers", torch_dtype=torch_dtype, use_safetensors=True)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
print(pipe.scheduler.compatibles)
#pipe.load_lora_weights("Natural_Flaccid_Penis.safetensors")
pipe = pipe.to(device)
pipe.enable_vae_tiling()


@spaces.GPU(duration=25) #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = ["""cinematic ,Two burly, middle-aged Turkish daddies—thick-mustached,
    salt-and-pepper-haired, with barrel chests and round,
    hairy bellies spilling from snug white briefs—lounge on a couch,
    flexing meaty biceps and thick thighs. The camera, propped on a tripod,
    captures their playful vlog as they smirk,
    teasing the lens with deep chuckles and exaggerated poses. Sunlight glints off sweat-sheened skin,
    their robust physiques shifting with every boastful stretch—biceps bulging,
    bellies jiggling—while thick fingers adjust the phone, framing their confident, flirtatious display.8k"""
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
    "huge muscle man , big penis , dick "
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=8,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=8.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()