Spaces:
Paused
Paused
import argparse | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import os | |
from llava.conversation import conv_templates, SeparatorStyle | |
from llava.utils import disable_torch_init | |
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria | |
from llava.model import * | |
from llava.model.utils import KeywordsStoppingCriteria | |
from PIL import Image | |
import os | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import glob | |
import numpy as np | |
import json | |
import tqdm | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
def load_image(image_file): | |
if image_file.startswith('http') or image_file.startswith('https'): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
else: | |
image = Image.open(image_file).convert('RGB') | |
return image | |
classes = ['wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', | |
'bed', 'windowpane', 'grass', 'cabinet', 'sidewalk', | |
'person', 'earth', 'door', 'table', 'mountain', 'plant', | |
'curtain', 'chair', 'car', 'water', 'painting', 'sofa', | |
'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair', | |
'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp', | |
'bathtub', 'railing', 'cushion', 'base', 'box', 'column', | |
'signboard', 'chest of drawers', 'counter', 'sand', 'sink', | |
'skyscraper', 'fireplace', 'refrigerator', 'grandstand', | |
'path', 'stairs', 'runway', 'case', 'pool table', 'pillow', | |
'screen door', 'stairway', 'river', 'bridge', 'bookcase', | |
'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill', | |
'bench', 'countertop', 'stove', 'palm', 'kitchen island', | |
'computer', 'swivel chair', 'boat', 'bar', 'arcade machine', | |
'hovel', 'bus', 'towel', 'light', 'truck', 'tower', | |
'chandelier', 'awning', 'streetlight', 'booth', | |
'television receiver', 'airplane', 'dirt track', 'apparel', | |
'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle', | |
'buffet', 'poster', 'stage', 'van', 'ship', 'fountain', | |
'conveyer belt', 'canopy', 'washer', 'plaything', | |
'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', | |
'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', | |
'step', 'tank', 'trade name', 'microwave', 'pot', 'animal', | |
'bicycle', 'lake', 'dishwasher', 'screen', 'blanket', | |
'sculpture', 'hood', 'sconce', 'vase', 'traffic light', | |
'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate', | |
'monitor', 'bulletin board', 'shower', 'radiator', 'glass', | |
'clock', 'flag'] | |
def eval_model(args): | |
# Model | |
disable_torch_init() | |
model_name = os.path.expanduser(args.model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
if "mpt" in model_name.lower(): | |
model = LlavaMPTForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda() | |
else: | |
# model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda() | |
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')#.cuda() | |
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16) | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
vision_tower = model.get_model().vision_tower[0] | |
if vision_tower.device.type == 'meta': | |
vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda() | |
model.get_model().vision_tower[0] = vision_tower | |
# else: | |
# vision_tower.to(device='cuda', dtype=torch.float16) | |
vision_config = vision_tower.config | |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] | |
vision_config.use_im_start_end = mm_use_im_start_end | |
if mm_use_im_start_end: | |
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) | |
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2 | |
# paths for all images | |
images = sorted(glob.glob("/mnt/proj74/xinlai/dataset/ade20k/images/training/*.jpg")) | |
results = [] | |
for i, image_file in enumerate(tqdm.tqdm(images)): | |
# if i == 2: | |
# break | |
# if i % 100 == 0: | |
# print("i: {}, len(images): {}".format(i, len(images))) | |
print("i: {}, len(images): {}".format(i, len(images))) | |
prompt_list = [] | |
label_file = image_file.replace("images", "annotations").replace(".jpg", ".png") | |
label = Image.open(label_file) | |
label = np.array(label) | |
label_unique = np.unique(label) | |
image = load_image(image_file) | |
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
image_tensor = image_tensor.unsqueeze(0).half().cuda() | |
for label in label_unique: | |
if label == 0: | |
continue | |
class_id = label - 1 | |
class_label = classes[class_id] | |
input_conv = "Can you describe the {} in this image?".format(class_label) | |
qs = input_conv | |
# qs = args.query | |
if mm_use_im_start_end: | |
qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN | |
else: | |
qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len | |
if "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt_multimodal" | |
else: | |
conv_mode = "multimodal" | |
if args.conv_mode is not None and conv_mode != args.conv_mode: | |
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) | |
else: | |
args.conv_mode = conv_mode | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
prompt_list.append(prompt) | |
# inputs = tokenizer([prompt]) | |
inputs = tokenizer(prompt_list, padding=True) | |
image_tensor = image_tensor.expand(len(prompt_list), -1, -1, -1).contiguous() | |
# image = load_image(args.image_file) | |
# image = load_image(image_file) | |
# image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] | |
input_ids = torch.as_tensor(inputs.input_ids).cuda() | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
print("stop_str: ", stop_str) | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor, | |
# do_sample=True, | |
# temperature=0.2, | |
max_new_tokens=512, #1024, | |
stopping_criteria=[stopping_criteria]) | |
input_token_len = input_ids.shape[1] | |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
if n_diff_input_output > 0: | |
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') | |
outputs_list = [] | |
for output_id in output_ids: | |
outputs = tokenizer.batch_decode(output_id[:, input_token_len:], skip_special_tokens=True)[0] | |
outputs = outputs.strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[:-len(stop_str)] | |
outputs = outputs.strip() | |
outputs_list.append(outputs) | |
for qs, outputs in zip(prompt_list, outputs_list): | |
print("qs: {}, output: {}, image_file: {}".format(qs, outputs, image_file)) | |
results.append({'image_id': image_file.split("/")[-1], 'input': prompt_list, 'output': outputs_list}) | |
with open("/mnt/proj74/xinlai/LLM/LLaVA/ade20k_conversations.json", "w+") as f: | |
json.dump(results, f) | |
# print(outputs) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-name", type=str, default="facebook/opt-350m") | |
parser.add_argument("--image-file", type=str, required=True) | |
parser.add_argument("--query", type=str, required=True) | |
parser.add_argument("--conv-mode", type=str, default=None) | |
args = parser.parse_args() | |
eval_model(args) | |