File size: 9,286 Bytes
5885496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
from llava.model import *
from llava.model.utils import KeywordsStoppingCriteria

from PIL import Image

import os
import requests
from PIL import Image
from io import BytesIO

import glob
import numpy as np
import json
import tqdm

DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


def load_image(image_file):
    if image_file.startswith('http') or image_file.startswith('https'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


classes = ['wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road',
            'bed', 'windowpane', 'grass', 'cabinet', 'sidewalk',
            'person', 'earth', 'door', 'table', 'mountain', 'plant',
            'curtain', 'chair', 'car', 'water', 'painting', 'sofa',
            'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair',
            'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp',
            'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
            'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
            'skyscraper', 'fireplace', 'refrigerator', 'grandstand',
            'path', 'stairs', 'runway', 'case', 'pool table', 'pillow',
            'screen door', 'stairway', 'river', 'bridge', 'bookcase',
            'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill',
            'bench', 'countertop', 'stove', 'palm', 'kitchen island',
            'computer', 'swivel chair', 'boat', 'bar', 'arcade machine',
            'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
            'chandelier', 'awning', 'streetlight', 'booth',
            'television receiver', 'airplane', 'dirt track', 'apparel',
            'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle',
            'buffet', 'poster', 'stage', 'van', 'ship', 'fountain',
            'conveyer belt', 'canopy', 'washer', 'plaything',
            'swimming pool', 'stool', 'barrel', 'basket', 'waterfall',
            'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food',
            'step', 'tank', 'trade name', 'microwave', 'pot', 'animal',
            'bicycle', 'lake', 'dishwasher', 'screen', 'blanket',
            'sculpture', 'hood', 'sconce', 'vase', 'traffic light',
            'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate',
            'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
            'clock', 'flag']

def eval_model(args):
    # Model
    disable_torch_init()
    model_name = os.path.expanduser(args.model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    if "mpt" in model_name.lower():
        model = LlavaMPTForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
    else:
        # model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
        model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')#.cuda()
    image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)

    vision_tower = model.get_model().vision_tower[0]
    if vision_tower.device.type == 'meta':
        vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda()
        model.get_model().vision_tower[0] = vision_tower
    # else:
        # vision_tower.to(device='cuda', dtype=torch.float16)
    vision_config = vision_tower.config
    vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
    vision_config.use_im_start_end = mm_use_im_start_end
    if mm_use_im_start_end:
        vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
    image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2

    # paths for all images
    images = sorted(glob.glob("/mnt/proj74/xinlai/dataset/ade20k/images/training/*.jpg"))
    results = []
    for i, image_file in enumerate(tqdm.tqdm(images)):

        # if i == 2:
        #     break

        # if i % 100 == 0:
        #     print("i: {}, len(images): {}".format(i, len(images)))

        print("i: {}, len(images): {}".format(i, len(images)))

        prompt_list = []
        label_file = image_file.replace("images", "annotations").replace(".jpg", ".png")
        label = Image.open(label_file)
        label = np.array(label)
        label_unique = np.unique(label)

        image = load_image(image_file)
        image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
        image_tensor = image_tensor.unsqueeze(0).half().cuda()

        for label in label_unique:
            if label == 0:
                continue
            class_id = label - 1
            class_label = classes[class_id]
            input_conv = "Can you describe the {} in this image?".format(class_label)
            qs = input_conv

            # qs = args.query
            if mm_use_im_start_end:
                qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
            else:
                qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len

            if "v1" in model_name.lower():
                conv_mode = "llava_v1"
            elif "mpt" in model_name.lower():
                conv_mode = "mpt_multimodal"
            else:
                conv_mode = "multimodal"

            if args.conv_mode is not None and conv_mode != args.conv_mode:
                print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
            else:
                args.conv_mode = conv_mode

            conv = conv_templates[args.conv_mode].copy()
            conv.append_message(conv.roles[0], qs)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()
            prompt_list.append(prompt)

        # inputs = tokenizer([prompt])
        inputs = tokenizer(prompt_list, padding=True)
        image_tensor = image_tensor.expand(len(prompt_list), -1, -1, -1).contiguous()

        # image = load_image(args.image_file)
        # image = load_image(image_file)
        # image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]

        input_ids = torch.as_tensor(inputs.input_ids).cuda()

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2

        print("stop_str: ", stop_str)

        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor,
                # do_sample=True,
                # temperature=0.2,
                max_new_tokens=512, #1024,
                stopping_criteria=[stopping_criteria])

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')

        outputs_list = []
        for output_id in output_ids:
            outputs = tokenizer.batch_decode(output_id[:, input_token_len:], skip_special_tokens=True)[0]
            outputs = outputs.strip()
            if outputs.endswith(stop_str):
                outputs = outputs[:-len(stop_str)]
            outputs = outputs.strip()
            outputs_list.append(outputs)

        for qs, outputs in zip(prompt_list, outputs_list):
            print("qs: {}, output: {}, image_file: {}".format(qs, outputs, image_file))

        results.append({'image_id': image_file.split("/")[-1], 'input': prompt_list, 'output': outputs_list})

    with open("/mnt/proj74/xinlai/LLM/LLaVA/ade20k_conversations.json", "w+") as f:
        json.dump(results, f)

            # print(outputs)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
    parser.add_argument("--image-file", type=str, required=True)
    parser.add_argument("--query", type=str, required=True)
    parser.add_argument("--conv-mode", type=str, default=None)
    args = parser.parse_args()

    eval_model(args)