Spaces:
Paused
Paused
File size: 9,286 Bytes
5885496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
from llava.model import *
from llava.model.utils import KeywordsStoppingCriteria
from PIL import Image
import os
import requests
from PIL import Image
from io import BytesIO
import glob
import numpy as np
import json
import tqdm
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def load_image(image_file):
if image_file.startswith('http') or image_file.startswith('https'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
classes = ['wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road',
'bed', 'windowpane', 'grass', 'cabinet', 'sidewalk',
'person', 'earth', 'door', 'table', 'mountain', 'plant',
'curtain', 'chair', 'car', 'water', 'painting', 'sofa',
'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair',
'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp',
'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
'skyscraper', 'fireplace', 'refrigerator', 'grandstand',
'path', 'stairs', 'runway', 'case', 'pool table', 'pillow',
'screen door', 'stairway', 'river', 'bridge', 'bookcase',
'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill',
'bench', 'countertop', 'stove', 'palm', 'kitchen island',
'computer', 'swivel chair', 'boat', 'bar', 'arcade machine',
'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
'chandelier', 'awning', 'streetlight', 'booth',
'television receiver', 'airplane', 'dirt track', 'apparel',
'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle',
'buffet', 'poster', 'stage', 'van', 'ship', 'fountain',
'conveyer belt', 'canopy', 'washer', 'plaything',
'swimming pool', 'stool', 'barrel', 'basket', 'waterfall',
'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food',
'step', 'tank', 'trade name', 'microwave', 'pot', 'animal',
'bicycle', 'lake', 'dishwasher', 'screen', 'blanket',
'sculpture', 'hood', 'sconce', 'vase', 'traffic light',
'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate',
'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
'clock', 'flag']
def eval_model(args):
# Model
disable_torch_init()
model_name = os.path.expanduser(args.model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if "mpt" in model_name.lower():
model = LlavaMPTForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
else:
# model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')#.cuda()
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
vision_tower = model.get_model().vision_tower[0]
if vision_tower.device.type == 'meta':
vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda()
model.get_model().vision_tower[0] = vision_tower
# else:
# vision_tower.to(device='cuda', dtype=torch.float16)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
# paths for all images
images = sorted(glob.glob("/mnt/proj74/xinlai/dataset/ade20k/images/training/*.jpg"))
results = []
for i, image_file in enumerate(tqdm.tqdm(images)):
# if i == 2:
# break
# if i % 100 == 0:
# print("i: {}, len(images): {}".format(i, len(images)))
print("i: {}, len(images): {}".format(i, len(images)))
prompt_list = []
label_file = image_file.replace("images", "annotations").replace(".jpg", ".png")
label = Image.open(label_file)
label = np.array(label)
label_unique = np.unique(label)
image = load_image(image_file)
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
image_tensor = image_tensor.unsqueeze(0).half().cuda()
for label in label_unique:
if label == 0:
continue
class_id = label - 1
class_label = classes[class_id]
input_conv = "Can you describe the {} in this image?".format(class_label)
qs = input_conv
# qs = args.query
if mm_use_im_start_end:
qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
else:
qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
if "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt_multimodal"
else:
conv_mode = "multimodal"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
prompt_list.append(prompt)
# inputs = tokenizer([prompt])
inputs = tokenizer(prompt_list, padding=True)
image_tensor = image_tensor.expand(len(prompt_list), -1, -1, -1).contiguous()
# image = load_image(args.image_file)
# image = load_image(image_file)
# image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
input_ids = torch.as_tensor(inputs.input_ids).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
print("stop_str: ", stop_str)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
# do_sample=True,
# temperature=0.2,
max_new_tokens=512, #1024,
stopping_criteria=[stopping_criteria])
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs_list = []
for output_id in output_ids:
outputs = tokenizer.batch_decode(output_id[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
outputs_list.append(outputs)
for qs, outputs in zip(prompt_list, outputs_list):
print("qs: {}, output: {}, image_file: {}".format(qs, outputs, image_file))
results.append({'image_id': image_file.split("/")[-1], 'input': prompt_list, 'output': outputs_list})
with open("/mnt/proj74/xinlai/LLM/LLaVA/ade20k_conversations.json", "w+") as f:
json.dump(results, f)
# print(outputs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--image-file", type=str, required=True)
parser.add_argument("--query", type=str, required=True)
parser.add_argument("--conv-mode", type=str, default=None)
args = parser.parse_args()
eval_model(args)
|