Spaces:
Build error
Build error
File size: 9,680 Bytes
9c212e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
'''
M-LSD
Copyright 2021-present NAVER Corp.
Apache License v2.0
'''
# for demo
import os
from flask import Flask, request, session, json, Response, render_template, abort, send_from_directory
import requests
from urllib.request import urlopen
from io import BytesIO
import uuid
import cv2
import time
import argparse
# for tflite
import numpy as np
from PIL import Image
import tensorflow as tf
# for square detector
from utils import pred_squares
os.environ['CUDA_VISIBLE_DEVICES'] = '' # CPU mode
# flask
app = Flask(__name__)
logger = app.logger
logger.info('init demo app')
# config
parser = argparse.ArgumentParser()
## model parameters
parser.add_argument('--tflite_path', default='./tflite_models/M-LSD_512_large_fp16.tflite', type=str)
parser.add_argument('--input_size', default=512, type=int,
help='The size of input images.')
## LSD parameter
parser.add_argument('--score_thr', default=0.10, type=float,
help='Discard center points when the score < score_thr.')
## intersection point parameters
parser.add_argument('--outside_ratio', default=0.10, type=float,
help='''Discard an intersection point
when it is located outside a line segment farther than line_length * outside_ratio.''')
parser.add_argument('--inside_ratio', default=0.50, type=float,
help='''Discard an intersection point
when it is located inside a line segment farther than line_length * inside_ratio.''')
## ranking boxes parameters
parser.add_argument('--w_overlap', default=0.0, type=float,
help='''When increasing w_overlap, the final box tends to overlap with
the detected line segments as much as possible.''')
parser.add_argument('--w_degree', default=1.14, type=float,
help='''When increasing w_degree, the final box tends to be
a parallel quadrilateral with reference to the angle of the box.''')
parser.add_argument('--w_length', default=0.03, type=float,
help='''When increasing w_length, the final box tends to be
a parallel quadrilateral with reference to the length of the box.''')
parser.add_argument('--w_area', default=1.84, type=float,
help='When increasing w_area, the final box tends to be the largest one out of candidates.')
parser.add_argument('--w_center', default=1.46, type=float,
help='When increasing w_center, the final box tends to be located in the center of input image.')
## flask demo parameter
parser.add_argument('--port', default=5000, type=int,
help='flask demo will be running on http://0.0.0.0:port/')
class model_graph:
def __init__(self, args):
self.interpreter, self.input_details, self.output_details = self.load_tflite(args.tflite_path)
self.params = {'score': args.score_thr,'outside_ratio': args.outside_ratio,'inside_ratio': args.inside_ratio,
'w_overlap': args.w_overlap,'w_degree': args.w_degree,'w_length': args.w_length,
'w_area': args.w_area,'w_center': args.w_center}
self.args = args
def load_tflite(self, tflite_path):
interpreter = tf.lite.Interpreter(model_path=tflite_path)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
return interpreter, input_details, output_details
def pred_tflite(self, image):
segments, squares, score_array, inter_points = pred_squares(image, self.interpreter, self.input_details, self.output_details, [self.args.input_size, self.args.input_size], params=self.params)
output = {}
output['segments'] = segments
output['squares'] = squares
output['scores'] = score_array
output['inter_points'] = inter_points
return output
def read_image(self, image_url):
response = requests.get(image_url, stream=True)
image = np.asarray(Image.open(BytesIO(response.content)).convert('RGB'))
max_len = 1024
h, w, _ = image.shape
org_shape = [h, w]
max_idx = np.argmax(org_shape)
max_val = org_shape[max_idx]
if max_val > max_len:
min_idx = (max_idx + 1) % 2
ratio = max_len / max_val
new_min = org_shape[min_idx] * ratio
new_shape = [0, 0]
new_shape[max_idx] = 1024
new_shape[min_idx] = new_min
image = cv2.resize(image, (int(new_shape[1]), int(new_shape[0])), interpolation=cv2.INTER_AREA)
return image
def init_resize_image(self, im, maximum_size=1024):
h, w, _ = im.shape
size = [h, w]
max_arg = np.argmax(size)
max_len = size[max_arg]
min_arg = max_arg - 1
min_len = size[min_arg]
if max_len < maximum_size:
return im
else:
ratio = maximum_size / max_len
max_len = max_len * ratio
min_len = min_len * ratio
size[max_arg] = int(max_len)
size[min_arg] = int(min_len)
im = cv2.resize(im, (size[1], size[0]), interpolation = cv2.INTER_AREA)
return im
def decode_image(self, session_id, rawimg):
dirpath = os.path.join('static/results', session_id)
if not os.path.exists(dirpath):
os.makedirs(dirpath)
save_path = os.path.join(dirpath, 'input.png')
input_image_url = os.path.join(dirpath, 'input.png')
img = cv2.imdecode(np.frombuffer(rawimg, dtype='uint8'), 1)[:,:,::-1]
img = self.init_resize_image(img)
cv2.imwrite(save_path, img[:,:,::-1])
return img, input_image_url
def draw_output(self, image, output, save_path='test.png'):
color_dict = {'red': [255, 0, 0],
'green': [0, 255, 0],
'blue': [0, 0, 255],
'cyan': [0, 255, 255],
'black': [0, 0, 0],
'yellow': [255, 255, 0],
'dark_yellow': [200, 200, 0]}
line_image = image.copy()
square_image = image.copy()
square_candidate_image = image.copy()
line_thick = 5
# output > line array
for line in output['segments']:
x_start, y_start, x_end, y_end = [int(val) for val in line]
cv2.line(line_image, (x_start, y_start), (x_end, y_end), color_dict['red'], line_thick)
inter_image = line_image.copy()
for pt in output['inter_points']:
x, y = [int(val) for val in pt]
cv2.circle(inter_image, (x, y), 10, color_dict['blue'], -1)
for square in output['squares']:
cv2.polylines(square_candidate_image, [square.reshape([-1, 1, 2])], True, color_dict['dark_yellow'], line_thick)
for square in output['squares'][0:1]:
cv2.polylines(square_image, [square.reshape([-1, 1, 2])], True, color_dict['yellow'], line_thick)
for pt in square:
cv2.circle(square_image, (int(pt[0]), int(pt[1])), 10, color_dict['cyan'], -1)
'''
square image | square candidates image
inter image | line image
'''
output_image = self.init_resize_image(square_image, 512)
output_image = np.concatenate([output_image, self.init_resize_image(square_candidate_image, 512)], axis=1)
output_image_tmp = np.concatenate([self.init_resize_image(inter_image, 512), self.init_resize_image(line_image, 512)], axis=1)
output_image = np.concatenate([output_image, output_image_tmp], axis=0)
cv2.imwrite(save_path, output_image[:,:,::-1])
return output_image
def save_output(self, session_id, input_image_url, image, output):
dirpath = os.path.join('static/results', session_id)
if not os.path.exists(dirpath):
os.makedirs(dirpath)
save_path = os.path.join(dirpath, 'output.png')
self.draw_output(image, output, save_path=save_path)
output_image_url = os.path.join(dirpath, 'output.png')
rst = {}
rst['input_image_url'] = input_image_url
rst['session_id'] = session_id
rst['output_image_url'] = output_image_url
with open(os.path.join(dirpath, 'results.json'), 'w') as f:
json.dump(rst, f)
def init_worker(args):
global model
model = model_graph(args)
@app.route('/')
def index():
return render_template('index_scan.html', session_id='dummy_session_id')
@app.route('/', methods=['POST'])
def index_post():
request_start = time.time()
configs = request.form
session_id = str(uuid.uuid1())
image_url = configs['image_url'] # image_url
if len(image_url) == 0:
bio = BytesIO()
request.files['image'].save(bio)
rawimg = bio.getvalue()
image, image_url = model.decode_image(session_id, rawimg)
else:
image = model.read_image(image_url)
output = model.pred_tflite(image)
model.save_output(session_id, image_url, image, output)
return render_template('index_scan.html', session_id=session_id)
@app.route('/favicon.ico')
def favicon():
return send_from_directory(os.path.join(app.root_path, 'static'),
'favicon.ico', mimetype='image/vnd.microsoft.icon')
if __name__ == '__main__':
args = parser.parse_args()
init_worker(args)
app.run(host='0.0.0.0', port=args.port)
|