Spaces:
Build error
Build error
akhaliq3
commited on
Commit
•
9c212e5
1
Parent(s):
d43f090
spaces demo
Browse files- LICENSE +201 -0
- app.py +48 -0
- demo_MLSD.py +275 -0
- requirements.txt +6 -0
- static/css/app.css +11 -0
- static/favicon.ico +0 -0
- templates/index_scan.html +128 -0
- tflite_models/M-LSD_320_large_fp16.tflite +0 -0
- tflite_models/M-LSD_320_large_fp32.tflite +0 -0
- tflite_models/M-LSD_320_tiny_fp16.tflite +0 -0
- tflite_models/M-LSD_320_tiny_fp32.tflite +0 -0
- tflite_models/M-LSD_512_large_fp16.tflite +0 -0
- tflite_models/M-LSD_512_large_fp32.tflite +0 -0
- tflite_models/M-LSD_512_tiny_fp16.tflite +0 -0
- tflite_models/M-LSD_512_tiny_fp32.tflite +0 -0
- utils.py +511 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "{}"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2021-present NAVER Corp.
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from utils import pred_lines, pred_squares
|
6 |
+
import gradio as gr
|
7 |
+
from urllib.request import urlretrieve
|
8 |
+
|
9 |
+
|
10 |
+
# Load MLSD 512 Large FP32 tflite
|
11 |
+
model_name = 'tflite_models/M-LSD_512_large_fp32.tflite'
|
12 |
+
interpreter = tf.lite.Interpreter(model_path=model_name)
|
13 |
+
|
14 |
+
interpreter.allocate_tensors()
|
15 |
+
input_details = interpreter.get_input_details()
|
16 |
+
output_details = interpreter.get_output_details()
|
17 |
+
|
18 |
+
def gradio_wrapper_for_LSD(img_input, score_thr, dist_thr):
|
19 |
+
lines = pred_lines(img_input, interpreter, input_details, output_details, input_shape=[512, 512], score_thr=score_thr, dist_thr=dist_thr)
|
20 |
+
img_output = img_input.copy()
|
21 |
+
|
22 |
+
# draw lines
|
23 |
+
for line in lines:
|
24 |
+
x_start, y_start, x_end, y_end = [int(val) for val in line]
|
25 |
+
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [0,255,255], 2)
|
26 |
+
|
27 |
+
return img_output
|
28 |
+
|
29 |
+
urlretrieve("https://www.digsdigs.com/photos/2015/05/a-bold-minimalist-living-room-with-dark-stained-wood-geometric-touches-a-sectional-sofa-and-built-in-lights-for-a-futuristic-feel.jpg","example1.jpg")
|
30 |
+
urlretrieve("https://specials-images.forbesimg.com/imageserve/5dfe2e6925ab5d0007cefda5/960x0.jpg","example2.jpg")
|
31 |
+
urlretrieve("https://images.livspace-cdn.com/w:768/h:651/plain/https://jumanji.livspace-cdn.com/magazine/wp-content/uploads/2015/11/27170345/atr-1-a-e1577187047515.jpeg","example3.jpg")
|
32 |
+
sample_images = [["example1.jpg", 0.2, 10.0], ["example2.jpg", 0.2, 10.0], ["example3.jpg", 0.2, 10.0]]
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
iface = gr.Interface(gradio_wrapper_for_LSD,
|
37 |
+
["image",
|
38 |
+
gr.inputs.Number(default=0.2, label='score_thr (0.0 ~ 1.0)'),
|
39 |
+
gr.inputs.Number(default=10.0, label='dist_thr (0.0 ~ 20.0)')
|
40 |
+
],
|
41 |
+
"image",
|
42 |
+
title="Line segment detection with Mobile LSD (M-LSD)",
|
43 |
+
description="M-LSD is a light-weight and real-time deep line segment detector, which can run on GPU, CPU, and even on Mobile devices. Try it by uploading an image or clicking on an example. Read more at the links below",
|
44 |
+
article="<p style='text-align: center'><a href='https://arxiv.org/abs/2106.00186'>Towards Real-time and Light-weight Line Segment Detection</a> | <a href='https://github.com/navervision/mlsd'>Github Repo</a></p>",
|
45 |
+
examples=sample_images,
|
46 |
+
allow_screenshot=True)
|
47 |
+
|
48 |
+
iface.launch()
|
demo_MLSD.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
M-LSD
|
3 |
+
Copyright 2021-present NAVER Corp.
|
4 |
+
Apache License v2.0
|
5 |
+
'''
|
6 |
+
# for demo
|
7 |
+
import os
|
8 |
+
from flask import Flask, request, session, json, Response, render_template, abort, send_from_directory
|
9 |
+
import requests
|
10 |
+
from urllib.request import urlopen
|
11 |
+
from io import BytesIO
|
12 |
+
import uuid
|
13 |
+
import cv2
|
14 |
+
import time
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
# for tflite
|
18 |
+
import numpy as np
|
19 |
+
from PIL import Image
|
20 |
+
import tensorflow as tf
|
21 |
+
|
22 |
+
# for square detector
|
23 |
+
from utils import pred_squares
|
24 |
+
|
25 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '' # CPU mode
|
26 |
+
|
27 |
+
# flask
|
28 |
+
app = Flask(__name__)
|
29 |
+
logger = app.logger
|
30 |
+
logger.info('init demo app')
|
31 |
+
|
32 |
+
# config
|
33 |
+
parser = argparse.ArgumentParser()
|
34 |
+
|
35 |
+
## model parameters
|
36 |
+
parser.add_argument('--tflite_path', default='./tflite_models/M-LSD_512_large_fp16.tflite', type=str)
|
37 |
+
parser.add_argument('--input_size', default=512, type=int,
|
38 |
+
help='The size of input images.')
|
39 |
+
|
40 |
+
## LSD parameter
|
41 |
+
parser.add_argument('--score_thr', default=0.10, type=float,
|
42 |
+
help='Discard center points when the score < score_thr.')
|
43 |
+
|
44 |
+
## intersection point parameters
|
45 |
+
parser.add_argument('--outside_ratio', default=0.10, type=float,
|
46 |
+
help='''Discard an intersection point
|
47 |
+
when it is located outside a line segment farther than line_length * outside_ratio.''')
|
48 |
+
parser.add_argument('--inside_ratio', default=0.50, type=float,
|
49 |
+
help='''Discard an intersection point
|
50 |
+
when it is located inside a line segment farther than line_length * inside_ratio.''')
|
51 |
+
|
52 |
+
## ranking boxes parameters
|
53 |
+
parser.add_argument('--w_overlap', default=0.0, type=float,
|
54 |
+
help='''When increasing w_overlap, the final box tends to overlap with
|
55 |
+
the detected line segments as much as possible.''')
|
56 |
+
parser.add_argument('--w_degree', default=1.14, type=float,
|
57 |
+
help='''When increasing w_degree, the final box tends to be
|
58 |
+
a parallel quadrilateral with reference to the angle of the box.''')
|
59 |
+
parser.add_argument('--w_length', default=0.03, type=float,
|
60 |
+
help='''When increasing w_length, the final box tends to be
|
61 |
+
a parallel quadrilateral with reference to the length of the box.''')
|
62 |
+
parser.add_argument('--w_area', default=1.84, type=float,
|
63 |
+
help='When increasing w_area, the final box tends to be the largest one out of candidates.')
|
64 |
+
parser.add_argument('--w_center', default=1.46, type=float,
|
65 |
+
help='When increasing w_center, the final box tends to be located in the center of input image.')
|
66 |
+
|
67 |
+
## flask demo parameter
|
68 |
+
parser.add_argument('--port', default=5000, type=int,
|
69 |
+
help='flask demo will be running on http://0.0.0.0:port/')
|
70 |
+
|
71 |
+
|
72 |
+
class model_graph:
|
73 |
+
def __init__(self, args):
|
74 |
+
self.interpreter, self.input_details, self.output_details = self.load_tflite(args.tflite_path)
|
75 |
+
self.params = {'score': args.score_thr,'outside_ratio': args.outside_ratio,'inside_ratio': args.inside_ratio,
|
76 |
+
'w_overlap': args.w_overlap,'w_degree': args.w_degree,'w_length': args.w_length,
|
77 |
+
'w_area': args.w_area,'w_center': args.w_center}
|
78 |
+
self.args = args
|
79 |
+
|
80 |
+
|
81 |
+
def load_tflite(self, tflite_path):
|
82 |
+
interpreter = tf.lite.Interpreter(model_path=tflite_path)
|
83 |
+
interpreter.allocate_tensors()
|
84 |
+
input_details = interpreter.get_input_details()
|
85 |
+
output_details = interpreter.get_output_details()
|
86 |
+
|
87 |
+
return interpreter, input_details, output_details
|
88 |
+
|
89 |
+
|
90 |
+
def pred_tflite(self, image):
|
91 |
+
segments, squares, score_array, inter_points = pred_squares(image, self.interpreter, self.input_details, self.output_details, [self.args.input_size, self.args.input_size], params=self.params)
|
92 |
+
|
93 |
+
output = {}
|
94 |
+
output['segments'] = segments
|
95 |
+
output['squares'] = squares
|
96 |
+
output['scores'] = score_array
|
97 |
+
output['inter_points'] = inter_points
|
98 |
+
|
99 |
+
return output
|
100 |
+
|
101 |
+
|
102 |
+
def read_image(self, image_url):
|
103 |
+
response = requests.get(image_url, stream=True)
|
104 |
+
image = np.asarray(Image.open(BytesIO(response.content)).convert('RGB'))
|
105 |
+
|
106 |
+
max_len = 1024
|
107 |
+
h, w, _ = image.shape
|
108 |
+
org_shape = [h, w]
|
109 |
+
max_idx = np.argmax(org_shape)
|
110 |
+
|
111 |
+
max_val = org_shape[max_idx]
|
112 |
+
if max_val > max_len:
|
113 |
+
min_idx = (max_idx + 1) % 2
|
114 |
+
ratio = max_len / max_val
|
115 |
+
new_min = org_shape[min_idx] * ratio
|
116 |
+
new_shape = [0, 0]
|
117 |
+
new_shape[max_idx] = 1024
|
118 |
+
new_shape[min_idx] = new_min
|
119 |
+
|
120 |
+
image = cv2.resize(image, (int(new_shape[1]), int(new_shape[0])), interpolation=cv2.INTER_AREA)
|
121 |
+
|
122 |
+
return image
|
123 |
+
|
124 |
+
|
125 |
+
def init_resize_image(self, im, maximum_size=1024):
|
126 |
+
h, w, _ = im.shape
|
127 |
+
size = [h, w]
|
128 |
+
max_arg = np.argmax(size)
|
129 |
+
max_len = size[max_arg]
|
130 |
+
min_arg = max_arg - 1
|
131 |
+
min_len = size[min_arg]
|
132 |
+
if max_len < maximum_size:
|
133 |
+
return im
|
134 |
+
else:
|
135 |
+
ratio = maximum_size / max_len
|
136 |
+
max_len = max_len * ratio
|
137 |
+
min_len = min_len * ratio
|
138 |
+
size[max_arg] = int(max_len)
|
139 |
+
size[min_arg] = int(min_len)
|
140 |
+
|
141 |
+
im = cv2.resize(im, (size[1], size[0]), interpolation = cv2.INTER_AREA)
|
142 |
+
|
143 |
+
return im
|
144 |
+
|
145 |
+
|
146 |
+
def decode_image(self, session_id, rawimg):
|
147 |
+
dirpath = os.path.join('static/results', session_id)
|
148 |
+
|
149 |
+
if not os.path.exists(dirpath):
|
150 |
+
os.makedirs(dirpath)
|
151 |
+
save_path = os.path.join(dirpath, 'input.png')
|
152 |
+
input_image_url = os.path.join(dirpath, 'input.png')
|
153 |
+
|
154 |
+
img = cv2.imdecode(np.frombuffer(rawimg, dtype='uint8'), 1)[:,:,::-1]
|
155 |
+
img = self.init_resize_image(img)
|
156 |
+
cv2.imwrite(save_path, img[:,:,::-1])
|
157 |
+
|
158 |
+
return img, input_image_url
|
159 |
+
|
160 |
+
|
161 |
+
def draw_output(self, image, output, save_path='test.png'):
|
162 |
+
color_dict = {'red': [255, 0, 0],
|
163 |
+
'green': [0, 255, 0],
|
164 |
+
'blue': [0, 0, 255],
|
165 |
+
'cyan': [0, 255, 255],
|
166 |
+
'black': [0, 0, 0],
|
167 |
+
'yellow': [255, 255, 0],
|
168 |
+
'dark_yellow': [200, 200, 0]}
|
169 |
+
|
170 |
+
line_image = image.copy()
|
171 |
+
square_image = image.copy()
|
172 |
+
square_candidate_image = image.copy()
|
173 |
+
|
174 |
+
line_thick = 5
|
175 |
+
|
176 |
+
# output > line array
|
177 |
+
for line in output['segments']:
|
178 |
+
x_start, y_start, x_end, y_end = [int(val) for val in line]
|
179 |
+
cv2.line(line_image, (x_start, y_start), (x_end, y_end), color_dict['red'], line_thick)
|
180 |
+
|
181 |
+
inter_image = line_image.copy()
|
182 |
+
|
183 |
+
for pt in output['inter_points']:
|
184 |
+
x, y = [int(val) for val in pt]
|
185 |
+
cv2.circle(inter_image, (x, y), 10, color_dict['blue'], -1)
|
186 |
+
|
187 |
+
for square in output['squares']:
|
188 |
+
cv2.polylines(square_candidate_image, [square.reshape([-1, 1, 2])], True, color_dict['dark_yellow'], line_thick)
|
189 |
+
|
190 |
+
for square in output['squares'][0:1]:
|
191 |
+
cv2.polylines(square_image, [square.reshape([-1, 1, 2])], True, color_dict['yellow'], line_thick)
|
192 |
+
for pt in square:
|
193 |
+
cv2.circle(square_image, (int(pt[0]), int(pt[1])), 10, color_dict['cyan'], -1)
|
194 |
+
|
195 |
+
'''
|
196 |
+
square image | square candidates image
|
197 |
+
inter image | line image
|
198 |
+
'''
|
199 |
+
output_image = self.init_resize_image(square_image, 512)
|
200 |
+
output_image = np.concatenate([output_image, self.init_resize_image(square_candidate_image, 512)], axis=1)
|
201 |
+
output_image_tmp = np.concatenate([self.init_resize_image(inter_image, 512), self.init_resize_image(line_image, 512)], axis=1)
|
202 |
+
output_image = np.concatenate([output_image, output_image_tmp], axis=0)
|
203 |
+
|
204 |
+
cv2.imwrite(save_path, output_image[:,:,::-1])
|
205 |
+
|
206 |
+
return output_image
|
207 |
+
|
208 |
+
|
209 |
+
def save_output(self, session_id, input_image_url, image, output):
|
210 |
+
dirpath = os.path.join('static/results', session_id)
|
211 |
+
|
212 |
+
if not os.path.exists(dirpath):
|
213 |
+
os.makedirs(dirpath)
|
214 |
+
|
215 |
+
save_path = os.path.join(dirpath, 'output.png')
|
216 |
+
self.draw_output(image, output, save_path=save_path)
|
217 |
+
|
218 |
+
output_image_url = os.path.join(dirpath, 'output.png')
|
219 |
+
|
220 |
+
rst = {}
|
221 |
+
rst['input_image_url'] = input_image_url
|
222 |
+
rst['session_id'] = session_id
|
223 |
+
rst['output_image_url'] = output_image_url
|
224 |
+
|
225 |
+
with open(os.path.join(dirpath, 'results.json'), 'w') as f:
|
226 |
+
json.dump(rst, f)
|
227 |
+
|
228 |
+
|
229 |
+
def init_worker(args):
|
230 |
+
global model
|
231 |
+
|
232 |
+
model = model_graph(args)
|
233 |
+
|
234 |
+
|
235 |
+
@app.route('/')
|
236 |
+
def index():
|
237 |
+
return render_template('index_scan.html', session_id='dummy_session_id')
|
238 |
+
|
239 |
+
|
240 |
+
@app.route('/', methods=['POST'])
|
241 |
+
def index_post():
|
242 |
+
request_start = time.time()
|
243 |
+
configs = request.form
|
244 |
+
|
245 |
+
session_id = str(uuid.uuid1())
|
246 |
+
|
247 |
+
image_url = configs['image_url'] # image_url
|
248 |
+
|
249 |
+
if len(image_url) == 0:
|
250 |
+
bio = BytesIO()
|
251 |
+
request.files['image'].save(bio)
|
252 |
+
rawimg = bio.getvalue()
|
253 |
+
image, image_url = model.decode_image(session_id, rawimg)
|
254 |
+
else:
|
255 |
+
image = model.read_image(image_url)
|
256 |
+
|
257 |
+
output = model.pred_tflite(image)
|
258 |
+
|
259 |
+
model.save_output(session_id, image_url, image, output)
|
260 |
+
|
261 |
+
return render_template('index_scan.html', session_id=session_id)
|
262 |
+
|
263 |
+
|
264 |
+
@app.route('/favicon.ico')
|
265 |
+
def favicon():
|
266 |
+
return send_from_directory(os.path.join(app.root_path, 'static'),
|
267 |
+
'favicon.ico', mimetype='image/vnd.microsoft.icon')
|
268 |
+
|
269 |
+
|
270 |
+
if __name__ == '__main__':
|
271 |
+
args = parser.parse_args()
|
272 |
+
|
273 |
+
init_worker(args)
|
274 |
+
|
275 |
+
app.run(host='0.0.0.0', port=args.port)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python
|
3 |
+
pillow
|
4 |
+
tensorflow-gpu
|
5 |
+
Flask
|
6 |
+
gradio
|
static/css/app.css
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#app {
|
2 |
+
padding: 20px;
|
3 |
+
}
|
4 |
+
|
5 |
+
#result .item {
|
6 |
+
padding-bottom: 20px;
|
7 |
+
}
|
8 |
+
|
9 |
+
.form-content-container {
|
10 |
+
padding-left: 20px;
|
11 |
+
}
|
static/favicon.ico
ADDED
templates/index_scan.html
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype! html>
|
2 |
+
<!--
|
3 |
+
M-LSD
|
4 |
+
Copyright 2021-present NAVER Corp.
|
5 |
+
Apache License v2.0
|
6 |
+
-->
|
7 |
+
<html>
|
8 |
+
<head>
|
9 |
+
<title>MLSD demo</title>
|
10 |
+
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
|
11 |
+
<link rel="stylesheet" href="https://cdn.staticfile.org/twitter-bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" type="text/css">
|
12 |
+
<link rel="stylesheet" href="/static/css/app.css" type="text/css">
|
13 |
+
|
14 |
+
<script src="https://cdn.staticfile.org/jquery/3.2.1/jquery.min.js"></script>
|
15 |
+
<script src="https://cdn.staticfile.org/tether/1.4.0/js/tether.min.js"></script>
|
16 |
+
<script src="https://cdn.staticfile.org/twitter-bootstrap/4.0.0-alpha.6/js/bootstrap.min.js"></script>
|
17 |
+
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/vue.js"></script>
|
18 |
+
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/vuetify.js"></script>
|
19 |
+
</head>
|
20 |
+
<style>
|
21 |
+
.container {
|
22 |
+
width: 1000em;
|
23 |
+
overflow-x: auto;
|
24 |
+
white-space: nowrap;
|
25 |
+
}
|
26 |
+
.image {
|
27 |
+
position: relative;
|
28 |
+
}
|
29 |
+
|
30 |
+
h2 {
|
31 |
+
position: absolute;
|
32 |
+
top: 200px;
|
33 |
+
left: 10px;
|
34 |
+
width: 100px;
|
35 |
+
color: white;
|
36 |
+
background: rgb(0, 0, 0);
|
37 |
+
background: rgba(0, 0, 0, 0.7);
|
38 |
+
}
|
39 |
+
</style>
|
40 |
+
<body>
|
41 |
+
<div id="app">
|
42 |
+
<div>
|
43 |
+
<form id="upload-form" method="post" enctype="multipart/form-data">
|
44 |
+
<h5>MLSD demo</h5>
|
45 |
+
<div class="form-content-container">
|
46 |
+
image_url: <input id="upload_url" type="text" name="image_url" /><br>
|
47 |
+
image_data: <input id="upload_image" type="file" name="image" /><br>
|
48 |
+
<input id="upload_button" type="submit" value="Submit" />
|
49 |
+
</div>
|
50 |
+
</form>
|
51 |
+
</div>
|
52 |
+
<hr>
|
53 |
+
<div id="result" v-if="show">
|
54 |
+
<div class="item">
|
55 |
+
<div><h5>Output_image</h5>
|
56 |
+
<ul>
|
57 |
+
<img id="output_image" :src="output_image_url" style="float:left;margin:10px;">
|
58 |
+
</ul>
|
59 |
+
<br style="clear:both">
|
60 |
+
|
61 |
+
<div><h5>Input_image</h5></div>
|
62 |
+
<ul>
|
63 |
+
<img id="input_image" :src="input_image_url" height="224" style="float:left;margin:10px;">
|
64 |
+
</ul>
|
65 |
+
<br style="clear:both" />
|
66 |
+
</div>
|
67 |
+
</div>
|
68 |
+
<hr>
|
69 |
+
<footer>
|
70 |
+
Github url: <a href="https://github.com/navervision/mlsd">https://github.com/navervision/mlsd</a>
|
71 |
+
</footer>
|
72 |
+
</div>
|
73 |
+
|
74 |
+
<script>
|
75 |
+
$(function() {
|
76 |
+
function getQueryStrings() {
|
77 |
+
var vars = [], hash, hashes;
|
78 |
+
if (window.location.href.indexOf('#') === -1) {
|
79 |
+
hashes = window.location.href.slice(window.location.href.indexOf('?') + 1).split('&');
|
80 |
+
} else {
|
81 |
+
hashes = window.location.href.slice(window.location.href.indexOf('?') + 1, window.location.href.indexOf('#')).split('&');
|
82 |
+
}
|
83 |
+
for(var i = 0; i < hashes.length; i++) {
|
84 |
+
hash = hashes[i].split('=');
|
85 |
+
vars.push(hash[0]);
|
86 |
+
vars[hash[0]] = hash[1];
|
87 |
+
}
|
88 |
+
return vars;
|
89 |
+
}
|
90 |
+
|
91 |
+
var session_id = '{{session_id}}';
|
92 |
+
|
93 |
+
var app = new Vue({
|
94 |
+
el: '#app',
|
95 |
+
data: {
|
96 |
+
session_id: session_id,
|
97 |
+
show: false,
|
98 |
+
},
|
99 |
+
});
|
100 |
+
|
101 |
+
var render = function(session_id) {
|
102 |
+
app.session_id = session_id;
|
103 |
+
app.server_info = ['loading'];
|
104 |
+
$.get('/static/results/' + session_id + '/results.json', function(data) {
|
105 |
+
if (typeof data == 'string') {
|
106 |
+
data = JSON.parse(data);
|
107 |
+
}
|
108 |
+
app.input_image_url = data.input_image_url;
|
109 |
+
app.session_id = data.session_id;
|
110 |
+
app.output_image_url = data.output_image_url;
|
111 |
+
app.show = true
|
112 |
+
});
|
113 |
+
}
|
114 |
+
|
115 |
+
if (session_id != 'dummy_session_id') {
|
116 |
+
window.history.pushState({},"", '/?r=' + session_id);
|
117 |
+
render(session_id);
|
118 |
+
} else {
|
119 |
+
var queryStrings = getQueryStrings();
|
120 |
+
var rid = queryStrings['r'];
|
121 |
+
if (rid) {
|
122 |
+
render(rid);
|
123 |
+
}
|
124 |
+
}
|
125 |
+
})
|
126 |
+
</script>
|
127 |
+
</body>
|
128 |
+
</html>
|
tflite_models/M-LSD_320_large_fp16.tflite
ADDED
Binary file (3.12 MB). View file
|
|
tflite_models/M-LSD_320_large_fp32.tflite
ADDED
Binary file (6.14 MB). View file
|
|
tflite_models/M-LSD_320_tiny_fp16.tflite
ADDED
Binary file (1.28 MB). View file
|
|
tflite_models/M-LSD_320_tiny_fp32.tflite
ADDED
Binary file (2.49 MB). View file
|
|
tflite_models/M-LSD_512_large_fp16.tflite
ADDED
Binary file (3.12 MB). View file
|
|
tflite_models/M-LSD_512_large_fp32.tflite
ADDED
Binary file (6.14 MB). View file
|
|
tflite_models/M-LSD_512_tiny_fp16.tflite
ADDED
Binary file (1.28 MB). View file
|
|
tflite_models/M-LSD_512_tiny_fp32.tflite
ADDED
Binary file (2.49 MB). View file
|
|
utils.py
ADDED
@@ -0,0 +1,511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
M-LSD
|
3 |
+
Copyright 2021-present NAVER Corp.
|
4 |
+
Apache License v2.0
|
5 |
+
'''
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
import tensorflow as tf
|
10 |
+
|
11 |
+
|
12 |
+
def pred_lines(image, interpreter, input_details, output_details, input_shape=[512, 512], score_thr=0.10, dist_thr=20.0):
|
13 |
+
h, w, _ = image.shape
|
14 |
+
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
|
15 |
+
|
16 |
+
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
17 |
+
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
18 |
+
interpreter.set_tensor(input_details[0]['index'], batch_image)
|
19 |
+
interpreter.invoke()
|
20 |
+
|
21 |
+
pts = interpreter.get_tensor(output_details[0]['index'])[0]
|
22 |
+
pts_score = interpreter.get_tensor(output_details[1]['index'])[0]
|
23 |
+
vmap = interpreter.get_tensor(output_details[2]['index'])[0]
|
24 |
+
|
25 |
+
start = vmap[:,:,:2]
|
26 |
+
end = vmap[:,:,2:]
|
27 |
+
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
28 |
+
|
29 |
+
segments_list = []
|
30 |
+
for center, score in zip(pts, pts_score):
|
31 |
+
y, x = center
|
32 |
+
distance = dist_map[y, x]
|
33 |
+
if score > score_thr and distance > dist_thr:
|
34 |
+
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
35 |
+
x_start = x + disp_x_start
|
36 |
+
y_start = y + disp_y_start
|
37 |
+
x_end = x + disp_x_end
|
38 |
+
y_end = y + disp_y_end
|
39 |
+
segments_list.append([x_start, y_start, x_end, y_end])
|
40 |
+
|
41 |
+
lines = 2 * np.array(segments_list) # 256 > 512
|
42 |
+
lines[:,0] = lines[:,0] * w_ratio
|
43 |
+
lines[:,1] = lines[:,1] * h_ratio
|
44 |
+
lines[:,2] = lines[:,2] * w_ratio
|
45 |
+
lines[:,3] = lines[:,3] * h_ratio
|
46 |
+
|
47 |
+
return lines
|
48 |
+
|
49 |
+
|
50 |
+
def pred_squares(image,
|
51 |
+
interpreter,
|
52 |
+
input_details,
|
53 |
+
output_details,
|
54 |
+
input_shape=[512, 512],
|
55 |
+
params={'score': 0.06,
|
56 |
+
'outside_ratio': 0.28,
|
57 |
+
'inside_ratio': 0.45,
|
58 |
+
'w_overlap': 0.0,
|
59 |
+
'w_degree': 1.95,
|
60 |
+
'w_length': 0.0,
|
61 |
+
'w_area': 1.86,
|
62 |
+
'w_center': 0.14}):
|
63 |
+
h, w, _ = image.shape
|
64 |
+
original_shape = [h, w]
|
65 |
+
|
66 |
+
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
67 |
+
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
68 |
+
interpreter.set_tensor(input_details[0]['index'], batch_image)
|
69 |
+
interpreter.invoke()
|
70 |
+
|
71 |
+
pts = interpreter.get_tensor(output_details[0]['index'])[0]
|
72 |
+
pts_score = interpreter.get_tensor(output_details[1]['index'])[0]
|
73 |
+
vmap = interpreter.get_tensor(output_details[2]['index'])[0]
|
74 |
+
|
75 |
+
start = vmap[:,:,:2] # (x, y)
|
76 |
+
end = vmap[:,:,2:] # (x, y)
|
77 |
+
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
78 |
+
|
79 |
+
junc_list = []
|
80 |
+
segments_list = []
|
81 |
+
for junc, score in zip(pts, pts_score):
|
82 |
+
y, x = junc
|
83 |
+
distance = dist_map[y, x]
|
84 |
+
if score > params['score'] and distance > 20.0:
|
85 |
+
junc_list.append([x, y])
|
86 |
+
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
87 |
+
d_arrow = 1.0
|
88 |
+
x_start = x + d_arrow * disp_x_start
|
89 |
+
y_start = y + d_arrow * disp_y_start
|
90 |
+
x_end = x + d_arrow * disp_x_end
|
91 |
+
y_end = y + d_arrow * disp_y_end
|
92 |
+
segments_list.append([x_start, y_start, x_end, y_end])
|
93 |
+
|
94 |
+
segments = np.array(segments_list)
|
95 |
+
|
96 |
+
####### post processing for squares
|
97 |
+
# 1. get unique lines
|
98 |
+
point = np.array([[0, 0]])
|
99 |
+
point = point[0]
|
100 |
+
start = segments[:,:2]
|
101 |
+
end = segments[:,2:]
|
102 |
+
diff = start - end
|
103 |
+
a = diff[:, 1]
|
104 |
+
b = -diff[:, 0]
|
105 |
+
c = a * start[:,0] + b * start[:,1]
|
106 |
+
|
107 |
+
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
|
108 |
+
theta = np.arctan2(diff[:,0], diff[:,1]) * 180 / np.pi
|
109 |
+
theta[theta < 0.0] += 180
|
110 |
+
hough = np.concatenate([d[:,None], theta[:,None]], axis=-1)
|
111 |
+
|
112 |
+
d_quant = 1
|
113 |
+
theta_quant = 2
|
114 |
+
hough[:,0] //= d_quant
|
115 |
+
hough[:,1] //= theta_quant
|
116 |
+
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
|
117 |
+
|
118 |
+
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
|
119 |
+
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
|
120 |
+
yx_indices = hough[indices,:].astype('int32')
|
121 |
+
acc_map[yx_indices[:,0], yx_indices[:,1]] = counts
|
122 |
+
idx_map[yx_indices[:,0], yx_indices[:,1]] = indices
|
123 |
+
|
124 |
+
acc_map_np = acc_map
|
125 |
+
acc_map = acc_map[None,:,:,None]
|
126 |
+
|
127 |
+
### fast suppression using tensorflow op
|
128 |
+
acc_map = tf.constant(acc_map, dtype=tf.float32)
|
129 |
+
max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5,5), strides=1, padding='same')(acc_map)
|
130 |
+
acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
|
131 |
+
flatten_acc_map = tf.reshape(acc_map, [1, -1])
|
132 |
+
topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
|
133 |
+
_, h, w, _ = acc_map.shape
|
134 |
+
y = tf.expand_dims(topk_indices // w, axis=-1)
|
135 |
+
x = tf.expand_dims(topk_indices % w, axis=-1)
|
136 |
+
yx = tf.concat([y, x], axis=-1)
|
137 |
+
###
|
138 |
+
|
139 |
+
yx = yx[0].numpy()
|
140 |
+
indices = idx_map[yx[:,0], yx[:,1]]
|
141 |
+
topk_values = topk_values.numpy()[0]
|
142 |
+
basis = 5 // 2
|
143 |
+
|
144 |
+
merged_segments = []
|
145 |
+
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
|
146 |
+
y, x = yx_pt
|
147 |
+
if max_indice == -1 or value == 0:
|
148 |
+
continue
|
149 |
+
segment_list = []
|
150 |
+
for y_offset in range(-basis, basis+1):
|
151 |
+
for x_offset in range(-basis, basis+1):
|
152 |
+
indice = idx_map[y+y_offset,x+x_offset]
|
153 |
+
cnt = int(acc_map_np[y+y_offset,x+x_offset])
|
154 |
+
if indice != -1:
|
155 |
+
segment_list.append(segments[indice])
|
156 |
+
if cnt > 1:
|
157 |
+
check_cnt = 1
|
158 |
+
current_hough = hough[indice]
|
159 |
+
for new_indice, new_hough in enumerate(hough):
|
160 |
+
if (current_hough == new_hough).all() and indice != new_indice:
|
161 |
+
segment_list.append(segments[new_indice])
|
162 |
+
check_cnt += 1
|
163 |
+
if check_cnt == cnt:
|
164 |
+
break
|
165 |
+
group_segments = np.array(segment_list).reshape([-1, 2])
|
166 |
+
sorted_group_segments = np.sort(group_segments, axis=0)
|
167 |
+
x_min, y_min = sorted_group_segments[0,:]
|
168 |
+
x_max, y_max = sorted_group_segments[-1,:]
|
169 |
+
|
170 |
+
deg = theta[max_indice]
|
171 |
+
if deg >= 90:
|
172 |
+
merged_segments.append([x_min, y_max, x_max, y_min])
|
173 |
+
else:
|
174 |
+
merged_segments.append([x_min, y_min, x_max, y_max])
|
175 |
+
|
176 |
+
# 2. get intersections
|
177 |
+
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
|
178 |
+
start = new_segments[:,:2] # (x1, y1)
|
179 |
+
end = new_segments[:,2:] # (x2, y2)
|
180 |
+
new_centers = (start + end) / 2.0
|
181 |
+
diff = start - end
|
182 |
+
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
|
183 |
+
|
184 |
+
# ax + by = c
|
185 |
+
a = diff[:,1]
|
186 |
+
b = -diff[:,0]
|
187 |
+
c = a * start[:,0] + b * start[:,1]
|
188 |
+
pre_det = a[:,None] * b[None,:]
|
189 |
+
det = pre_det - np.transpose(pre_det)
|
190 |
+
|
191 |
+
pre_inter_y = a[:,None] * c[None,:]
|
192 |
+
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
|
193 |
+
pre_inter_x = c[:,None] * b[None,:]
|
194 |
+
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
|
195 |
+
inter_pts = np.concatenate([inter_x[:,:,None], inter_y[:,:,None]], axis=-1).astype('int32')
|
196 |
+
|
197 |
+
# 3. get corner information
|
198 |
+
# 3.1 get distance
|
199 |
+
'''
|
200 |
+
dist_segments:
|
201 |
+
| dist(0), dist(1), dist(2), ...|
|
202 |
+
dist_inter_to_segment1:
|
203 |
+
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
|
204 |
+
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
|
205 |
+
...
|
206 |
+
dist_inter_to_semgnet2:
|
207 |
+
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
208 |
+
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
209 |
+
...
|
210 |
+
'''
|
211 |
+
|
212 |
+
dist_inter_to_segment1_start = np.sqrt(np.sum(((inter_pts - start[:,None,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
213 |
+
dist_inter_to_segment1_end = np.sqrt(np.sum(((inter_pts - end[:,None,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
214 |
+
dist_inter_to_segment2_start = np.sqrt(np.sum(((inter_pts - start[None,:,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
215 |
+
dist_inter_to_segment2_end = np.sqrt(np.sum(((inter_pts - end[None,:,:]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
216 |
+
|
217 |
+
# sort ascending
|
218 |
+
dist_inter_to_segment1 = np.sort(np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1), axis=-1) # [n_batch, n_batch, 2]
|
219 |
+
dist_inter_to_segment2 = np.sort(np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1), axis=-1) # [n_batch, n_batch, 2]
|
220 |
+
|
221 |
+
# 3.2 get degree
|
222 |
+
inter_to_start = new_centers[:,None,:] - inter_pts
|
223 |
+
deg_inter_to_start = np.arctan2(inter_to_start[:,:,1], inter_to_start[:,:,0]) * 180 / np.pi
|
224 |
+
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
|
225 |
+
inter_to_end = new_centers[None,:,:] - inter_pts
|
226 |
+
deg_inter_to_end = np.arctan2(inter_to_end[:,:,1], inter_to_end[:,:,0]) * 180 / np.pi
|
227 |
+
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
|
228 |
+
|
229 |
+
'''
|
230 |
+
0 -- 1
|
231 |
+
| |
|
232 |
+
3 -- 2
|
233 |
+
'''
|
234 |
+
# rename variables
|
235 |
+
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
|
236 |
+
# sort deg ascending
|
237 |
+
deg_sort = np.sort(np.concatenate([deg1_map[:,:,None], deg2_map[:,:,None]], axis=-1), axis=-1)
|
238 |
+
|
239 |
+
deg_diff_map = np.abs(deg1_map - deg2_map)
|
240 |
+
# we only consider the smallest degree of intersect
|
241 |
+
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
|
242 |
+
|
243 |
+
# define available degree range
|
244 |
+
deg_range = [60, 120]
|
245 |
+
|
246 |
+
corner_dict = {corner_info: [] for corner_info in range(4)}
|
247 |
+
inter_points = []
|
248 |
+
for i in range(inter_pts.shape[0]):
|
249 |
+
for j in range(i + 1, inter_pts.shape[1]):
|
250 |
+
# i, j > line index, always i < j
|
251 |
+
x, y = inter_pts[i, j, :]
|
252 |
+
deg1, deg2 = deg_sort[i, j, :]
|
253 |
+
deg_diff = deg_diff_map[i, j]
|
254 |
+
|
255 |
+
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
|
256 |
+
|
257 |
+
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
|
258 |
+
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
|
259 |
+
check_distance = ((dist_inter_to_segment1[i,j,1] >= dist_segments[i] and \
|
260 |
+
dist_inter_to_segment1[i,j,0] <= dist_segments[i] * outside_ratio) or \
|
261 |
+
(dist_inter_to_segment1[i,j,1] <= dist_segments[i] and \
|
262 |
+
dist_inter_to_segment1[i,j,0] <= dist_segments[i] * inside_ratio)) and \
|
263 |
+
((dist_inter_to_segment2[i,j,1] >= dist_segments[j] and \
|
264 |
+
dist_inter_to_segment2[i,j,0] <= dist_segments[j] * outside_ratio) or \
|
265 |
+
(dist_inter_to_segment2[i,j,1] <= dist_segments[j] and \
|
266 |
+
dist_inter_to_segment2[i,j,0] <= dist_segments[j] * inside_ratio))
|
267 |
+
|
268 |
+
if check_degree and check_distance:
|
269 |
+
corner_info = None
|
270 |
+
|
271 |
+
if (deg1 >= 0 and deg1 <= 45 and deg2 >=45 and deg2 <= 120) or \
|
272 |
+
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
|
273 |
+
corner_info, color_info = 0, 'blue'
|
274 |
+
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
|
275 |
+
corner_info, color_info = 1, 'green'
|
276 |
+
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
|
277 |
+
corner_info, color_info = 2, 'black'
|
278 |
+
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
|
279 |
+
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
|
280 |
+
corner_info, color_info = 3, 'cyan'
|
281 |
+
else:
|
282 |
+
corner_info, color_info = 4, 'red' # we don't use it
|
283 |
+
continue
|
284 |
+
|
285 |
+
corner_dict[corner_info].append([x, y, i, j])
|
286 |
+
inter_points.append([x, y])
|
287 |
+
|
288 |
+
square_list = []
|
289 |
+
connect_list = []
|
290 |
+
segments_list = []
|
291 |
+
for corner0 in corner_dict[0]:
|
292 |
+
for corner1 in corner_dict[1]:
|
293 |
+
connect01 = False
|
294 |
+
for corner0_line in corner0[2:]:
|
295 |
+
if corner0_line in corner1[2:]:
|
296 |
+
connect01 = True
|
297 |
+
break
|
298 |
+
if connect01:
|
299 |
+
for corner2 in corner_dict[2]:
|
300 |
+
connect12 = False
|
301 |
+
for corner1_line in corner1[2:]:
|
302 |
+
if corner1_line in corner2[2:]:
|
303 |
+
connect12 = True
|
304 |
+
break
|
305 |
+
if connect12:
|
306 |
+
for corner3 in corner_dict[3]:
|
307 |
+
connect23 = False
|
308 |
+
for corner2_line in corner2[2:]:
|
309 |
+
if corner2_line in corner3[2:]:
|
310 |
+
connect23 = True
|
311 |
+
break
|
312 |
+
if connect23:
|
313 |
+
for corner3_line in corner3[2:]:
|
314 |
+
if corner3_line in corner0[2:]:
|
315 |
+
# SQUARE!!!
|
316 |
+
'''
|
317 |
+
0 -- 1
|
318 |
+
| |
|
319 |
+
3 -- 2
|
320 |
+
square_list:
|
321 |
+
order: 0 > 1 > 2 > 3
|
322 |
+
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
323 |
+
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
324 |
+
...
|
325 |
+
connect_list:
|
326 |
+
order: 01 > 12 > 23 > 30
|
327 |
+
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
328 |
+
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
329 |
+
...
|
330 |
+
segments_list:
|
331 |
+
order: 0 > 1 > 2 > 3
|
332 |
+
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
333 |
+
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
334 |
+
...
|
335 |
+
'''
|
336 |
+
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
|
337 |
+
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
|
338 |
+
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
|
339 |
+
|
340 |
+
def check_outside_inside(segments_info, connect_idx):
|
341 |
+
# return 'outside or inside', min distance, cover_param, peri_param
|
342 |
+
if connect_idx == segments_info[0]:
|
343 |
+
check_dist_mat = dist_inter_to_segment1
|
344 |
+
else:
|
345 |
+
check_dist_mat = dist_inter_to_segment2
|
346 |
+
|
347 |
+
i, j = segments_info
|
348 |
+
min_dist, max_dist = check_dist_mat[i, j, :]
|
349 |
+
connect_dist = dist_segments[connect_idx]
|
350 |
+
if max_dist > connect_dist:
|
351 |
+
return 'outside', min_dist, 0, 1
|
352 |
+
else:
|
353 |
+
return 'inside', min_dist, -1, -1
|
354 |
+
|
355 |
+
|
356 |
+
top_square = None
|
357 |
+
|
358 |
+
try:
|
359 |
+
map_size = input_shape[0] / 2
|
360 |
+
squares = np.array(square_list).reshape([-1,4,2])
|
361 |
+
score_array = []
|
362 |
+
connect_array = np.array(connect_list)
|
363 |
+
segments_array = np.array(segments_list).reshape([-1,4,2])
|
364 |
+
|
365 |
+
# get degree of corners:
|
366 |
+
squares_rollup = np.roll(squares, 1, axis=1)
|
367 |
+
squares_rolldown = np.roll(squares, -1, axis=1)
|
368 |
+
vec1 = squares_rollup - squares
|
369 |
+
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
|
370 |
+
vec2 = squares_rolldown - squares
|
371 |
+
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
|
372 |
+
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
|
373 |
+
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
|
374 |
+
|
375 |
+
# get square score
|
376 |
+
overlap_scores = []
|
377 |
+
degree_scores = []
|
378 |
+
length_scores = []
|
379 |
+
|
380 |
+
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
|
381 |
+
'''
|
382 |
+
0 -- 1
|
383 |
+
| |
|
384 |
+
3 -- 2
|
385 |
+
|
386 |
+
# segments: [4, 2]
|
387 |
+
# connects: [4]
|
388 |
+
'''
|
389 |
+
|
390 |
+
###################################### OVERLAP SCORES
|
391 |
+
cover = 0
|
392 |
+
perimeter = 0
|
393 |
+
# check 0 > 1 > 2 > 3
|
394 |
+
square_length = []
|
395 |
+
|
396 |
+
for start_idx in range(4):
|
397 |
+
end_idx = (start_idx + 1) % 4
|
398 |
+
|
399 |
+
connect_idx = connects[start_idx] # segment idx of segment01
|
400 |
+
start_segments = segments[start_idx]
|
401 |
+
end_segments = segments[end_idx]
|
402 |
+
|
403 |
+
start_point = square[start_idx]
|
404 |
+
end_point = square[end_idx]
|
405 |
+
|
406 |
+
# check whether outside or inside
|
407 |
+
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments, connect_idx)
|
408 |
+
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
|
409 |
+
|
410 |
+
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
|
411 |
+
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
|
412 |
+
|
413 |
+
square_length.append(dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
|
414 |
+
|
415 |
+
overlap_scores.append(cover / perimeter)
|
416 |
+
######################################
|
417 |
+
###################################### DEGREE SCORES
|
418 |
+
'''
|
419 |
+
deg0 vs deg2
|
420 |
+
deg1 vs deg3
|
421 |
+
'''
|
422 |
+
deg0, deg1, deg2, deg3 = degree
|
423 |
+
deg_ratio1 = deg0 / deg2
|
424 |
+
if deg_ratio1 > 1.0:
|
425 |
+
deg_ratio1 = 1 / deg_ratio1
|
426 |
+
deg_ratio2 = deg1 / deg3
|
427 |
+
if deg_ratio2 > 1.0:
|
428 |
+
deg_ratio2 = 1 / deg_ratio2
|
429 |
+
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
|
430 |
+
######################################
|
431 |
+
###################################### LENGTH SCORES
|
432 |
+
'''
|
433 |
+
len0 vs len2
|
434 |
+
len1 vs len3
|
435 |
+
'''
|
436 |
+
len0, len1, len2, len3 = square_length
|
437 |
+
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
|
438 |
+
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
|
439 |
+
length_scores.append((len_ratio1 + len_ratio2) / 2)
|
440 |
+
|
441 |
+
######################################
|
442 |
+
|
443 |
+
overlap_scores = np.array(overlap_scores)
|
444 |
+
overlap_scores /= np.max(overlap_scores)
|
445 |
+
|
446 |
+
degree_scores = np.array(degree_scores)
|
447 |
+
#degree_scores /= np.max(degree_scores)
|
448 |
+
|
449 |
+
length_scores = np.array(length_scores)
|
450 |
+
|
451 |
+
###################################### AREA SCORES
|
452 |
+
area_scores = np.reshape(squares, [-1, 4, 2])
|
453 |
+
area_x = area_scores[:,:,0]
|
454 |
+
area_y = area_scores[:,:,1]
|
455 |
+
correction = area_x[:,-1] * area_y[:,0] - area_y[:,-1] * area_x[:,0]
|
456 |
+
area_scores = np.sum(area_x[:,:-1] * area_y[:,1:], axis=-1) - np.sum(area_y[:,:-1] * area_x[:,1:], axis=-1)
|
457 |
+
area_scores = 0.5 * np.abs(area_scores + correction)
|
458 |
+
area_scores /= (map_size * map_size) #np.max(area_scores)
|
459 |
+
######################################
|
460 |
+
|
461 |
+
###################################### CENTER SCORES
|
462 |
+
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
|
463 |
+
# squares: [n, 4, 2]
|
464 |
+
square_centers = np.mean(squares, axis=1) # [n, 2]
|
465 |
+
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
|
466 |
+
center_scores = center2center / (map_size / np.sqrt(2.0))
|
467 |
+
|
468 |
+
|
469 |
+
'''
|
470 |
+
score_w = [overlap, degree, area, center, length]
|
471 |
+
'''
|
472 |
+
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
|
473 |
+
score_array = params['w_overlap'] * overlap_scores \
|
474 |
+
+ params['w_degree'] * degree_scores \
|
475 |
+
+ params['w_area'] * area_scores \
|
476 |
+
- params['w_center'] * center_scores \
|
477 |
+
+ params['w_length'] * length_scores
|
478 |
+
|
479 |
+
best_square = []
|
480 |
+
|
481 |
+
sorted_idx = np.argsort(score_array)[::-1]
|
482 |
+
score_array = score_array[sorted_idx]
|
483 |
+
squares = squares[sorted_idx]
|
484 |
+
|
485 |
+
except Exception as e:
|
486 |
+
pass
|
487 |
+
|
488 |
+
try:
|
489 |
+
new_segments[:,0] = new_segments[:,0] * 2 / input_shape[1] * original_shape[1]
|
490 |
+
new_segments[:,1] = new_segments[:,1] * 2 / input_shape[0] * original_shape[0]
|
491 |
+
new_segments[:,2] = new_segments[:,2] * 2 / input_shape[1] * original_shape[1]
|
492 |
+
new_segments[:,3] = new_segments[:,3] * 2 / input_shape[0] * original_shape[0]
|
493 |
+
except:
|
494 |
+
new_segments = []
|
495 |
+
|
496 |
+
try:
|
497 |
+
squares[:,:,0] = squares[:,:,0] * 2 / input_shape[1] * original_shape[1]
|
498 |
+
squares[:,:,1] = squares[:,:,1] * 2 / input_shape[0] * original_shape[0]
|
499 |
+
except:
|
500 |
+
squares = []
|
501 |
+
score_array = []
|
502 |
+
|
503 |
+
try:
|
504 |
+
inter_points = np.array(inter_points)
|
505 |
+
inter_points[:,0] = inter_points[:,0] * 2 / input_shape[1] * original_shape[1]
|
506 |
+
inter_points[:,1] = inter_points[:,1] * 2 / input_shape[0] * original_shape[0]
|
507 |
+
except:
|
508 |
+
inter_points = []
|
509 |
+
|
510 |
+
|
511 |
+
return new_segments, squares, score_array, inter_points
|