Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from PIL import Image | |
import src.depth_pro as depth_pro | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import os | |
os.system("source get_pretrained_models.sh") | |
# Load model and preprocessing transform | |
model, transform = depth_pro.create_model_and_transforms() | |
model.eval() | |
def predict_depth(input_image): | |
# Preprocess the image | |
result = depth_pro.load_rgb(input_image.name) | |
image = result[0] | |
f_px = result[-1] # Assuming f_px is the last item in the returned tuple | |
image = transform(image) | |
# Run inference | |
prediction = model.infer(image, f_px=f_px) | |
depth = prediction["depth"] # Depth in [m] | |
focallength_px = prediction["focallength_px"] # Focal length in pixels | |
# Normalize depth for visualization | |
depth_normalized = (depth - np.min(depth)) / (np.max(depth) - np.min(depth)) | |
# Create a color map | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(depth_normalized, cmap='viridis') | |
plt.colorbar(label='Depth') | |
plt.title('Predicted Depth Map') | |
plt.axis('off') | |
# Save the plot to a file | |
output_path = "depth_map.png" | |
plt.savefig(output_path) | |
plt.close() | |
return output_path, f"Focal length: {focallength_px:.2f} pixels" | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=predict_depth, | |
inputs=gr.Image(type="filepath"), | |
outputs=[gr.Image(type="filepath", label="Depth Map"), gr.Textbox(label="Focal Length")], | |
title="Depth Prediction Demo", | |
description="Upload an image to predict its depth map and focal length." | |
) | |
# Launch the interface | |
iface.launch() |