Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,590 Bytes
b19928f a394b1d b19928f 5a3dc03 b19928f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import gradio as gr
from PIL import Image
import src.depth_pro as depth_pro
import numpy as np
import matplotlib.pyplot as plt
import os
os.system("source get_pretrained_models.sh")
# Load model and preprocessing transform
model, transform = depth_pro.create_model_and_transforms()
model.eval()
def predict_depth(input_image):
# Preprocess the image
result = depth_pro.load_rgb(input_image.name)
image = result[0]
f_px = result[-1] # Assuming f_px is the last item in the returned tuple
image = transform(image)
# Run inference
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m]
focallength_px = prediction["focallength_px"] # Focal length in pixels
# Normalize depth for visualization
depth_normalized = (depth - np.min(depth)) / (np.max(depth) - np.min(depth))
# Create a color map
plt.figure(figsize=(10, 10))
plt.imshow(depth_normalized, cmap='viridis')
plt.colorbar(label='Depth')
plt.title('Predicted Depth Map')
plt.axis('off')
# Save the plot to a file
output_path = "depth_map.png"
plt.savefig(output_path)
plt.close()
return output_path, f"Focal length: {focallength_px:.2f} pixels"
# Create Gradio interface
iface = gr.Interface(
fn=predict_depth,
inputs=gr.Image(type="filepath"),
outputs=[gr.Image(type="filepath", label="Depth Map"), gr.Textbox(label="Focal Length")],
title="Depth Prediction Demo",
description="Upload an image to predict its depth map and focal length."
)
# Launch the interface
iface.launch() |