Spaces:
Running on CPU Upgrade

File size: 19,640 Bytes
b3b66bf
 
c919a10
53c7098
6aaa79e
59c62cc
b9f9a46
684bece
2b36c3d
809397a
88bbb22
957783c
8173b7d
a0ec21d
b767358
684bece
affa990
 
 
 
 
 
 
 
53c7098
affa990
 
 
 
 
c919a10
90a0c6e
affa990
793e72e
 
 
 
affa990
 
 
 
 
 
 
793e72e
affa990
793e72e
 
 
 
affa990
 
793e72e
 
affa990
793e72e
affa990
793e72e
 
 
affa990
 
af4bac7
0f3449e
 
 
affa990
 
 
 
0f3449e
affa990
0f3449e
 
 
 
affa990
 
0f3449e
 
affa990
0f3449e
affa990
c919a10
affa990
 
af4bac7
81d02d1
 
f599584
affa990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f599584
affa990
828cfdc
 
81d02d1
828cfdc
affa990
 
828cfdc
 
affa990
828cfdc
affa990
828cfdc
affa990
 
53c7098
81d02d1
 
f599584
affa990
 
 
 
 
f599584
affa990
828cfdc
 
81d02d1
828cfdc
affa990
 
828cfdc
 
affa990
828cfdc
affa990
828cfdc
affa990
 
59c62cc
7adbeef
 
 
 
 
 
e8d64f2
7adbeef
 
 
 
affa990
 
7adbeef
 
affa990
7adbeef
affa990
7adbeef
affa990
 
fa93ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
affa990
fa93ad7
 
 
 
affa990
 
fa93ad7
 
affa990
fa93ad7
affa990
fa93ad7
 
 
 
 
affa990
 
957783c
 
 
 
14de3cc
 
 
957783c
14de3cc
 
642c55c
 
 
957783c
affa990
957783c
 
 
 
affa990
 
957783c
 
affa990
957783c
affa990
957783c
affa990
 
3289c64
 
 
 
affa990
 
 
 
 
 
 
 
 
3289c64
 
 
 
 
 
affa990
 
3289c64
 
affa990
3289c64
affa990
3289c64
affa990
 
d878ab1
 
 
 
b767358
 
 
 
 
 
 
 
 
d878ab1
affa990
d878ab1
 
 
 
affa990
 
d878ab1
 
affa990
d878ab1
affa990
d878ab1
affa990
 
684bece
 
 
 
affa990
 
 
 
 
 
 
684bece
affa990
684bece
 
 
 
affa990
 
684bece
 
affa990
684bece
affa990
684bece
affa990
 
2b36c3d
 
 
 
affa990
 
 
 
 
 
 
 
 
 
 
2b36c3d
affa990
2b36c3d
 
 
 
affa990
 
2b36c3d
 
affa990
2b36c3d
affa990
2b36c3d
affa990
 
809397a
 
 
 
affa990
 
809397a
affa990
809397a
 
 
 
affa990
 
809397a
 
affa990
809397a
affa990
809397a
affa990
 
88bbb22
 
 
 
 
 
 
 
affa990
88bbb22
 
 
 
affa990
 
5a2865e
 
affa990
5a2865e
affa990
5a2865e
affa990
 
8173b7d
 
 
 
affa990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8173b7d
affa990
8173b7d
 
 
 
affa990
 
8173b7d
 
affa990
8173b7d
affa990
8173b7d
affa990
 
a0ec21d
 
 
 
 
 
 
affa990
a0ec21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
affa990
a0ec21d
 
 
 
affa990
 
a0ec21d
 
affa990
a0ec21d
affa990
a0ec21d
c919a10
8c87ef1
c919a10
b3b66bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import gradio as gr
import gemini_gradio
import openai_gradio
import anthropic_gradio
import sambanova_gradio
import xai_gradio
import hyperbolic_gradio
import perplexity_gradio
import mistral_gradio
import fireworks_gradio
import cerebras_gradio
import groq_gradio
import together_gradio
import nvidia_gradio
import dashscope_gradio

# Common helper functions for all tabs
def create_interface(model_name, src_registry, **kwargs):
    return gr.load(
        name=model_name,
        src=src_registry,
        fill_height=True,
        **kwargs
    )

def update_model(new_model, container, src_registry, **kwargs):
    with container:
        container.load_none()
        new_interface = create_interface(new_model, src_registry, **kwargs)
        new_interface.render()

with gr.Blocks(fill_height=True) as demo:
    # Meta Llama Tab
    with gr.Tab("Meta Llama"):
        with gr.Row():
            llama_model = gr.Dropdown(
                choices=[
                    'Meta-Llama-3.2-1B-Instruct',
                    'Meta-Llama-3.2-3B-Instruct',
                    'Llama-3.2-11B-Vision-Instruct',
                    'Llama-3.2-90B-Vision-Instruct',
                    'Meta-Llama-3.1-8B-Instruct',
                    'Meta-Llama-3.1-70B-Instruct',
                    'Meta-Llama-3.1-405B-Instruct'
                ],
                value='Llama-3.2-90B-Vision-Instruct',
                label="Select Llama Model",
                interactive=True
            )
        
        with gr.Column() as llama_container:
            llama_interface = create_interface(llama_model.value, sambanova_gradio.registry, multimodal=True)
        
        llama_model.change(
            fn=lambda new_model: update_model(new_model, llama_container, sambanova_gradio.registry, multimodal=True),
            inputs=[llama_model],
            outputs=[]
        )
        
        gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")

    # Gemini Tab
    with gr.Tab("Gemini"):
        with gr.Row():
            gemini_model = gr.Dropdown(
                choices=[
                    'gemini-1.5-flash',
                    'gemini-1.5-flash-8b',
                    'gemini-1.5-pro',
                    'gemini-exp-1114'
                ],
                value='gemini-1.5-pro',
                label="Select Gemini Model",
                interactive=True
            )
        
        with gr.Column() as gemini_container:
            gemini_interface = create_interface(gemini_model.value, gemini_gradio.registry)
        
        gemini_model.change(
            fn=lambda new_model: update_model(new_model, gemini_container, gemini_gradio.registry),
            inputs=[gemini_model],
            outputs=[]
        )

    # ChatGPT Tab
    with gr.Tab("ChatGPT"):
        with gr.Row():
            model_choice = gr.Dropdown(
                choices=[
                    'gpt-4o-2024-11-20',
                    'gpt-4o',
                    'gpt-4o-2024-08-06',
                    'gpt-4o-2024-05-13',
                    'chatgpt-4o-latest',
                    'gpt-4o-mini',
                    'gpt-4o-mini-2024-07-18',
                    'o1-preview',
                    'o1-preview-2024-09-12',
                    'o1-mini',
                    'o1-mini-2024-09-12',
                    'gpt-4-turbo',
                    'gpt-4-turbo-2024-04-09',
                    'gpt-4-turbo-preview',
                    'gpt-4-0125-preview',
                    'gpt-4-1106-preview',
                    'gpt-4',
                    'gpt-4-0613'
                ],
                value='gpt-4o-2024-11-20',
                label="Select Model",
                interactive=True
            )
        
        with gr.Column() as chatgpt_container:
            chatgpt_interface = create_interface(model_choice.value, openai_gradio.registry)
        
        model_choice.change(
            fn=lambda new_model: update_model(new_model, chatgpt_container, openai_gradio.registry),
            inputs=[model_choice],
            outputs=[]
        )

    # Claude Tab
    with gr.Tab("Claude"):
        with gr.Row():
            claude_model = gr.Dropdown(
                choices=[
                    'claude-3-5-sonnet-20241022',
                    'claude-3-5-haiku-20241022',
                    'claude-3-opus-20240229',
                    'claude-3-sonnet-20240229',
                    'claude-3-haiku-20240307'
                ],
                value='claude-3-5-sonnet-20241022',
                label="Select Model",
                interactive=True
            )
        
        with gr.Column() as claude_container:
            claude_interface = create_interface(claude_model.value, anthropic_gradio.registry, accept_token=True)
        
        claude_model.change(
            fn=lambda new_model: update_model(new_model, claude_container, anthropic_gradio.registry, accept_token=True),
            inputs=[claude_model],
            outputs=[]
        )

    # Grok Tab
    with gr.Tab("Grok"):
        with gr.Row():
            grok_model = gr.Dropdown(
                choices=[
                    'grok-beta',
                    'grok-vision-beta'
                ],
                value='grok-vision-beta',
                label="Select Grok Model",
                interactive=True
            )
        
        with gr.Column() as grok_container:
            grok_interface = create_interface(grok_model.value, xai_gradio.registry)
        
        grok_model.change(
            fn=lambda new_model: update_model(new_model, grok_container, xai_gradio.registry),
            inputs=[grok_model],
            outputs=[]
        )

    # Hugging Face Tab
    with gr.Tab("Hugging Face"):
        with gr.Row():
            hf_model = gr.Dropdown(
                choices=[
                    'Qwen/Qwen2.5-Coder-32B-Instruct',
                    'Qwen/Qwen2.5-72B-Instruct',
                    'meta-llama/Llama-3.1-70B-Instruct',
                    'mistralai/Mixtral-8x7B-Instruct-v0.1',
                    'meta-llama/Llama-3.1-8B-Instruct',
                    'google/gemma-2-9b-it',
                    'mistralai/Mistral-7B-v0.1',
                    'meta-llama/Llama-2-7b-chat-hf',
                    'meta-llama/Llama-3.2-3B-Instruct',
                    'meta-llama/Llama-3.2-1B-Instruct',
                    'Qwen/Qwen2.5-1.5B-Instruct',
                    'microsoft/Phi-3.5-mini-instruct',
                    'HuggingFaceTB/SmolLM2-1.7B-Instruct',
                    'google/gemma-2-2b-it',
                    'meta-llama/Llama-3.2-3B',
                    'meta-llama/Llama-3.2-1B',
                    'openai-community/gpt2'
                ],
                value='HuggingFaceTB/SmolLM2-1.7B-Instruct',
                label="Select Hugging Face Model",
                interactive=True
            )
        
        with gr.Column() as hf_container:
            hf_interface = create_interface(hf_model.value, "models")
        
        hf_model.change(
            fn=lambda new_model: update_model(new_model, hf_container, "models"),
            inputs=[hf_model],
            outputs=[]
        )
        
        gr.Markdown("""
        **Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication.
        """)

    # Groq Tab
    with gr.Tab("Groq"):
        with gr.Row():
            groq_model = gr.Dropdown(
                choices=[
                    'llama3-groq-8b-8192-tool-use-preview',
                    'llama3-groq-70b-8192-tool-use-preview',
                    'llama-3.2-1b-preview',
                    'llama-3.2-3b-preview',
                    'llama-3.2-11b-text-preview',
                    'llama-3.2-90b-text-preview',
                    'mixtral-8x7b-32768',
                    'gemma2-9b-it',
                    'gemma-7b-it'
                ],
                value='llama3-groq-70b-8192-tool-use-preview',
                label="Select Groq Model",
                interactive=True
            )
        
        with gr.Column() as groq_container:
            groq_interface = create_interface(groq_model.value, groq_gradio.registry)
        
        groq_model.change(
            fn=lambda new_model: update_model(new_model, groq_container, groq_gradio.registry),
            inputs=[groq_model],
            outputs=[]
        )

    # Hyperbolic Tab
    with gr.Tab("Hyperbolic"):
        with gr.Row():
            hyperbolic_model = gr.Dropdown(
                choices=[
                    'Qwen/Qwen2.5-Coder-32B-Instruct',
                    'meta-llama/Llama-3.2-3B-Instruct',
                    'meta-llama/Meta-Llama-3.1-8B-Instruct',
                    'meta-llama/Meta-Llama-3.1-70B-Instruct',
                    'meta-llama/Meta-Llama-3-70B-Instruct',
                    'NousResearch/Hermes-3-Llama-3.1-70B',
                    'Qwen/Qwen2.5-72B-Instruct',
                    'deepseek-ai/DeepSeek-V2.5',
                    'meta-llama/Meta-Llama-3.1-405B-Instruct'
                ],
                value='Qwen/Qwen2.5-Coder-32B-Instruct',
                label="Select Hyperbolic Model",
                interactive=True
            )
        
        with gr.Column() as hyperbolic_container:
            hyperbolic_interface = create_interface(hyperbolic_model.value, hyperbolic_gradio.registry)
        
        hyperbolic_model.change(
            fn=lambda new_model: update_model(new_model, hyperbolic_container, hyperbolic_gradio.registry),
            inputs=[hyperbolic_model],
            outputs=[]
        )

    # Qwen Tab
    with gr.Tab("Qwen"):
        with gr.Row():
            qwen_model = gr.Dropdown(
                choices=[
                    'qwen-turbo-latest',
                    'qwen-turbo',
                    'qwen-plus',
                    'qwen-max',
                    'qwen1.5-110b-chat',
                    'qwen1.5-72b-chat',
                    'qwen1.5-32b-chat',
                    'qwen1.5-14b-chat',
                    'qwen1.5-7b-chat'
                ],
                value='qwen-turbo-latest',
                label="Select Qwen Model",
                interactive=True
            )
        
        with gr.Column() as qwen_container:
            qwen_interface = create_interface(qwen_model.value, dashscope_gradio.registry)
        
        qwen_model.change(
            fn=lambda new_model: update_model(new_model, qwen_container, dashscope_gradio.registry),
            inputs=[qwen_model],
            outputs=[]
        )

    # Perplexity Tab
    with gr.Tab("Perplexity"):
        with gr.Row():
            perplexity_model = gr.Dropdown(
                choices=[
                    'llama-3.1-sonar-small-128k-online',
                    'llama-3.1-sonar-large-128k-online',
                    'llama-3.1-sonar-huge-128k-online',
                    'llama-3.1-sonar-small-128k-chat',
                    'llama-3.1-sonar-large-128k-chat',
                    'llama-3.1-8b-instruct',
                    'llama-3.1-70b-instruct'
                ],
                value='llama-3.1-sonar-large-128k-online',
                label="Select Perplexity Model",
                interactive=True
            )
        
        with gr.Column() as perplexity_container:
            perplexity_interface = create_interface(perplexity_model.value, perplexity_gradio.registry, accept_token=True)
        
        perplexity_model.change(
            fn=lambda new_model: update_model(new_model, perplexity_container, perplexity_gradio.registry, accept_token=True),
            inputs=[perplexity_model],
            outputs=[]
        )

    # Mistral Tab
    with gr.Tab("Mistral"):
        with gr.Row():
            mistral_model = gr.Dropdown(
                choices=[
                    'mistral-large-latest',
                    'pixtral-large-latest',
                    'ministral-3b-latest',
                    'ministral-8b-latest',
                    'mistral-small-latest',
                    'codestral-latest',
                    'mistral-embed',
                    'mistral-moderation-latest',
                    'pixtral-12b-2409',
                    'open-mistral-nemo',
                    'open-codestral-mamba'
                ],
                value='pixtral-large-latest',
                label="Select Mistral Model",
                interactive=True
            )
        
        with gr.Column() as mistral_container:
            mistral_interface = create_interface(mistral_model.value, mistral_gradio.registry)
        
        mistral_model.change(
            fn=lambda new_model: update_model(new_model, mistral_container, mistral_gradio.registry),
            inputs=[mistral_model],
            outputs=[]
        )

    # Fireworks Tab
    with gr.Tab("Fireworks"):
        with gr.Row():
            fireworks_model = gr.Dropdown(
                choices=[
                    'f1-preview',
                    'f1-mini-preview'
                ],
                value='f1-preview',
                label="Select Fireworks Model",
                interactive=True
            )
        
        with gr.Column() as fireworks_container:
            fireworks_interface = create_interface(fireworks_model.value, fireworks_gradio.registry)
        
        fireworks_model.change(
            fn=lambda new_model: update_model(new_model, fireworks_container, fireworks_gradio.registry),
            inputs=[fireworks_model],
            outputs=[]
        )

    # Cerebras Tab
    with gr.Tab("Cerebras"):
        with gr.Row():
            cerebras_model = gr.Dropdown(
                choices=[
                    'llama3.1-8b',
                    'llama3.1-70b',
                    'llama3.1-405b'
                ],
                value='llama3.1-70b',
                label="Select Cerebras Model",
                interactive=True
            )
        
        with gr.Column() as cerebras_container:
            cerebras_interface = create_interface(cerebras_model.value, cerebras_gradio.registry, accept_token=True)
        
        cerebras_model.change(
            fn=lambda new_model: update_model(new_model, cerebras_container, cerebras_gradio.registry, accept_token=True),
            inputs=[cerebras_model],
            outputs=[]
        )

    # Together Tab
    with gr.Tab("Together"):
        with gr.Row():
            together_model = gr.Dropdown(
                choices=[
                    'meta-llama/Llama-Vision-Free',
                    'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
                    'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
                    'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo',
                    'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo',
                    'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
                    'meta-llama/Meta-Llama-3-8B-Instruct-Turbo',
                    'meta-llama/Meta-Llama-3-70B-Instruct-Turbo',
                    'meta-llama/Llama-3.2-3B-Instruct-Turbo',
                    'meta-llama/Meta-Llama-3-8B-Instruct-Lite',
                    'meta-llama/Meta-Llama-3-70B-Instruct-Lite',
                    'meta-llama/Llama-3-8b-chat-hf',
                    'meta-llama/Llama-3-70b-chat-hf',
                    'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
                    'Qwen/Qwen2.5-Coder-32B-Instruct',
                    'microsoft/WizardLM-2-8x22B',
                    'google/gemma-2-27b-it',
                    'google/gemma-2-9b-it',
                    'databricks/dbrx-instruct',
                    'mistralai/Mixtral-8x7B-Instruct-v0.1',
                    'mistralai/Mixtral-8x22B-Instruct-v0.1',
                    'Qwen/Qwen2.5-7B-Instruct-Turbo',
                    'Qwen/Qwen2.5-72B-Instruct-Turbo',
                    'Qwen/Qwen2-72B-Instruct',
                    'deepseek-ai/deepseek-llm-67b-chat',
                    'google/gemma-2b-it',
                    'Gryphe/MythoMax-L2-13b',
                    'meta-llama/Llama-2-13b-chat-hf',
                    'mistralai/Mistral-7B-Instruct-v0.1',
                    'mistralai/Mistral-7B-Instruct-v0.2',
                    'mistralai/Mistral-7B-Instruct-v0.3',
                    'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO',
                    'togethercomputer/StripedHyena-Nous-7B',
                    'upstage/SOLAR-10.7B-Instruct-v1.0'
                ],
                value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
                label="Select Together Model",
                interactive=True
            )
        
        with gr.Column() as together_container:
            together_interface = create_interface(together_model.value, together_gradio.registry, multimodal=True)
        
        together_model.change(
            fn=lambda new_model: update_model(new_model, together_container, together_gradio.registry, multimodal=True),
            inputs=[together_model],
            outputs=[]
        )

    # NVIDIA Tab
    with gr.Tab("NVIDIA"):
        with gr.Row():
            nvidia_model = gr.Dropdown(
                choices=[
                    'nvidia/llama3-chatqa-1.5-70b',
                    'nvidia/llama3-chatqa-1.5-8b',
                    'nvidia-nemotron-4-340b-instruct',
                    'meta/llama-3.1-70b-instruct',
                    'meta/codellama-70b',
                    'meta/llama2-70b',
                    'meta/llama3-8b',
                    'meta/llama3-70b',
                    'mistralai/codestral-22b-instruct-v0.1',
                    'mistralai/mathstral-7b-v0.1',
                    'mistralai/mistral-large-2-instruct',
                    'mistralai/mistral-7b-instruct',
                    'mistralai/mistral-7b-instruct-v0.3',
                    'mistralai/mixtral-8x7b-instruct',
                    'mistralai/mixtral-8x22b-instruct',
                    'mistralai/mistral-large',
                    'google/gemma-2b',
                    'google/gemma-7b',
                    'google/gemma-2-2b-it',
                    'google/gemma-2-9b-it',
                    'google/gemma-2-27b-it',
                    'google/codegemma-1.1-7b',
                    'google/codegemma-7b',
                    'google/recurrentgemma-2b',
                    'google/shieldgemma-9b',
                    'microsoft/phi-3-medium-128k-instruct',
                    'microsoft/phi-3-medium-4k-instruct',
                    'microsoft/phi-3-mini-128k-instruct',
                    'microsoft/phi-3-mini-4k-instruct',
                    'microsoft/phi-3-small-128k-instruct',
                    'microsoft/phi-3-small-8k-instruct',
                    'qwen/qwen2-7b-instruct',
                    'databricks/dbrx-instruct',
                    'deepseek-ai/deepseek-coder-6.7b-instruct',
                    'upstage/solar-10.7b-instruct',
                    'snowflake/arctic'
                ],
                value='meta/llama-3.1-70b-instruct',
                label="Select NVIDIA Model",
                interactive=True
            )
        
        with gr.Column() as nvidia_container:
            nvidia_interface = create_interface(nvidia_model.value, nvidia_gradio.registry, accept_token=True)
        
        nvidia_model.change(
            fn=lambda new_model: update_model(new_model, nvidia_container, nvidia_gradio.registry, accept_token=True),
            inputs=[nvidia_model],
            outputs=[]
        )

demo.launch(ssr_mode=False)