Spaces:
Running on CPU Upgrade

akhaliq HF staff commited on
Commit
affa990
·
1 Parent(s): fa93ad7

fix for model changing

Browse files
Files changed (1) hide show
  1. app.py +213 -446
app.py CHANGED
@@ -14,161 +14,139 @@ import together_gradio
14
  import nvidia_gradio
15
  import dashscope_gradio
16
 
 
 
 
 
 
 
 
 
17
 
 
 
 
 
 
18
 
19
  with gr.Blocks(fill_height=True) as demo:
 
20
  with gr.Tab("Meta Llama"):
21
  with gr.Row():
22
  llama_model = gr.Dropdown(
23
  choices=[
24
- 'Meta-Llama-3.2-1B-Instruct', # Llama 3.2 1B
25
- 'Meta-Llama-3.2-3B-Instruct', # Llama 3.2 3B
26
- 'Llama-3.2-11B-Vision-Instruct', # Llama 3.2 11B
27
- 'Llama-3.2-90B-Vision-Instruct', # Llama 3.2 90B
28
- 'Meta-Llama-3.1-8B-Instruct', # Llama 3.1 8B
29
- 'Meta-Llama-3.1-70B-Instruct', # Llama 3.1 70B
30
- 'Meta-Llama-3.1-405B-Instruct' # Llama 3.1 405B
31
  ],
32
- value='Llama-3.2-90B-Vision-Instruct', # Default to the most advanced model
33
  label="Select Llama Model",
34
  interactive=True
35
  )
36
 
37
- llama_interface = gr.load(
38
- name=llama_model.value,
39
- src=sambanova_gradio.registry,
40
- multimodal=True,
41
- fill_height=True
42
- )
43
-
44
- def update_llama_model(new_model):
45
- return gr.load(
46
- name=new_model,
47
- src=sambanova_gradio.registry,
48
- multimodal=True,
49
- fill_height=True
50
- )
51
 
52
  llama_model.change(
53
- fn=update_llama_model,
54
  inputs=[llama_model],
55
- outputs=[llama_interface]
56
  )
57
 
58
  gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
 
 
59
  with gr.Tab("Gemini"):
60
  with gr.Row():
61
  gemini_model = gr.Dropdown(
62
  choices=[
63
- 'gemini-1.5-flash', # Fast and versatile performance
64
- 'gemini-1.5-flash-8b', # High volume, lower intelligence tasks
65
- 'gemini-1.5-pro', # Complex reasoning tasks
66
- 'gemini-exp-1114' # Quality improvements
67
  ],
68
- value='gemini-1.5-pro', # Default to the most advanced model
69
  label="Select Gemini Model",
70
  interactive=True
71
  )
72
 
73
- gemini_interface = gr.load(
74
- name=gemini_model.value,
75
- src=gemini_gradio.registry,
76
- fill_height=True
77
- )
78
-
79
- def update_gemini_model(new_model):
80
- return gr.load(
81
- name=new_model,
82
- src=gemini_gradio.registry,
83
- fill_height=True
84
- )
85
 
86
  gemini_model.change(
87
- fn=update_gemini_model,
88
  inputs=[gemini_model],
89
- outputs=[gemini_interface]
90
  )
 
 
91
  with gr.Tab("ChatGPT"):
92
  with gr.Row():
93
  model_choice = gr.Dropdown(
94
  choices=[
95
- 'gpt-4o-2024-11-20', # Latest GPT-4o model
96
- 'gpt-4o', # Previous most advanced model
97
- 'gpt-4o-2024-08-06', # Latest snapshot
98
- 'gpt-4o-2024-05-13', # Original snapshot
99
- 'chatgpt-4o-latest', # Latest ChatGPT version
100
- 'gpt-4o-mini', # Small model
101
- 'gpt-4o-mini-2024-07-18', # Latest mini version
102
- 'o1-preview', # Reasoning model
103
- 'o1-preview-2024-09-12', # Latest o1 model snapshot
104
- 'o1-mini', # Faster reasoning model
105
- 'o1-mini-2024-09-12', # Latest o1-mini model snapshot
106
- 'gpt-4-turbo', # Latest GPT-4 Turbo model
107
- 'gpt-4-turbo-2024-04-09', # Latest GPT-4 Turbo snapshot
108
- 'gpt-4-turbo-preview', # GPT-4 Turbo preview model
109
- 'gpt-4-0125-preview', # GPT-4 Turbo preview model for laziness
110
- 'gpt-4-1106-preview', # Improved instruction following model
111
- 'gpt-4', # Standard GPT-4 model
112
- 'gpt-4-0613' # Snapshot of GPT-4 from June 2023
113
  ],
114
- value='gpt-4o-2024-11-20', # Updated default to latest model
115
  label="Select Model",
116
  interactive=True
117
  )
118
-
119
- chatgpt_interface = gr.load(
120
- name=model_choice.value,
121
- src=openai_gradio.registry,
122
- fill_height=True
123
- )
124
 
125
- def update_model(new_model):
126
- return gr.load(
127
- name=new_model,
128
- src=openai_gradio.registry,
129
- fill_height=True
130
- )
131
 
132
  model_choice.change(
133
- fn=update_model,
134
  inputs=[model_choice],
135
- outputs=[chatgpt_interface]
136
  )
 
 
137
  with gr.Tab("Claude"):
138
  with gr.Row():
139
  claude_model = gr.Dropdown(
140
  choices=[
141
- 'claude-3-5-sonnet-20241022', # Latest Sonnet
142
- 'claude-3-5-haiku-20241022', # Latest Haiku
143
- 'claude-3-opus-20240229', # Opus
144
- 'claude-3-sonnet-20240229', # Previous Sonnet
145
- 'claude-3-haiku-20240307' # Previous Haiku
146
  ],
147
- value='claude-3-5-sonnet-20241022', # Default to latest Sonnet
148
  label="Select Model",
149
  interactive=True
150
  )
151
-
152
- claude_interface = gr.load(
153
- name=claude_model.value,
154
- src=anthropic_gradio.registry,
155
- accept_token=True,
156
- fill_height=True
157
- )
158
 
159
- def update_claude_model(new_model):
160
- return gr.load(
161
- name=new_model,
162
- src=anthropic_gradio.registry,
163
- accept_token=True,
164
- fill_height=True
165
- )
166
 
167
  claude_model.change(
168
- fn=update_claude_model,
169
  inputs=[claude_model],
170
- outputs=[claude_interface]
171
  )
 
 
172
  with gr.Tab("Grok"):
173
  with gr.Row():
174
  grok_model = gr.Dropdown(
@@ -180,86 +158,58 @@ with gr.Blocks(fill_height=True) as demo:
180
  label="Select Grok Model",
181
  interactive=True
182
  )
183
-
184
- grok_interface = gr.load(
185
- name=grok_model.value,
186
- src=xai_gradio.registry,
187
- fill_height=True
188
- )
189
 
190
- def update_grok_model(new_model):
191
- return gr.load(
192
- name=new_model,
193
- src=xai_gradio.registry,
194
- fill_height=True
195
- )
196
 
197
  grok_model.change(
198
- fn=update_grok_model,
199
  inputs=[grok_model],
200
- outputs=[grok_interface]
201
  )
 
 
202
  with gr.Tab("Hugging Face"):
203
  with gr.Row():
204
  hf_model = gr.Dropdown(
205
  choices=[
206
- # Latest Large Models
207
  'Qwen/Qwen2.5-Coder-32B-Instruct',
208
  'Qwen/Qwen2.5-72B-Instruct',
209
  'meta-llama/Llama-3.1-70B-Instruct',
210
  'mistralai/Mixtral-8x7B-Instruct-v0.1',
211
- # Mid-size Models
212
  'meta-llama/Llama-3.1-8B-Instruct',
213
  'google/gemma-2-9b-it',
214
  'mistralai/Mistral-7B-v0.1',
215
  'meta-llama/Llama-2-7b-chat-hf',
216
- # Smaller Models
217
  'meta-llama/Llama-3.2-3B-Instruct',
218
  'meta-llama/Llama-3.2-1B-Instruct',
219
  'Qwen/Qwen2.5-1.5B-Instruct',
220
  'microsoft/Phi-3.5-mini-instruct',
221
  'HuggingFaceTB/SmolLM2-1.7B-Instruct',
222
  'google/gemma-2-2b-it',
223
- # Base Models
224
  'meta-llama/Llama-3.2-3B',
225
  'meta-llama/Llama-3.2-1B',
226
  'openai-community/gpt2'
227
  ],
228
- value='HuggingFaceTB/SmolLM2-1.7B-Instruct', # Default to a powerful model
229
  label="Select Hugging Face Model",
230
  interactive=True
231
  )
232
-
233
- hf_interface = gr.load(
234
- name=hf_model.value,
235
- src="models", # Use direct model loading from HF
236
- fill_height=True
237
- )
238
 
239
- def update_hf_model(new_model):
240
- return gr.load(
241
- name=new_model,
242
- src="models",
243
- fill_height=True
244
- )
245
 
246
  hf_model.change(
247
- fn=update_hf_model,
248
  inputs=[hf_model],
249
- outputs=[hf_interface]
250
  )
251
 
252
  gr.Markdown("""
253
  **Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication.
254
-
255
- Models are organized by size:
256
- - **Large Models**: 32B-72B parameters
257
- - **Mid-size Models**: 7B-9B parameters
258
- - **Smaller Models**: 1B-3B parameters
259
- - **Base Models**: Original architectures
260
-
261
- Visit [Hugging Face](https://huggingface.co/) to learn more about available models.
262
  """)
 
 
263
  with gr.Tab("Groq"):
264
  with gr.Row():
265
  groq_model = gr.Dropdown(
@@ -274,282 +224,159 @@ with gr.Blocks(fill_height=True) as demo:
274
  'gemma2-9b-it',
275
  'gemma-7b-it'
276
  ],
277
- value='llama3-groq-70b-8192-tool-use-preview', # Default to Groq's optimized model
278
  label="Select Groq Model",
279
  interactive=True
280
  )
281
-
282
- groq_interface = gr.load(
283
- name=groq_model.value,
284
- src=groq_gradio.registry,
285
- fill_height=True
286
- )
287
 
288
- def update_groq_model(new_model):
289
- return gr.load(
290
- name=new_model,
291
- src=groq_gradio.registry,
292
- fill_height=True
293
- )
294
 
295
  groq_model.change(
296
- fn=update_groq_model,
297
  inputs=[groq_model],
298
- outputs=[groq_interface]
299
  )
300
-
301
- gr.Markdown("""
302
- **Note:** You need a Groq API key to use these models. Get one at [Groq Cloud](https://console.groq.com/).
303
- """)
304
  with gr.Tab("Hyperbolic"):
305
  with gr.Row():
306
  hyperbolic_model = gr.Dropdown(
307
  choices=[
308
- # # Vision Models (TODO)
309
- # 'Qwen/Qwen2-VL-72B-Instruct', # 32K context
310
- # 'mistralai/Pixtral-12B-2409', # 32K context
311
- # 'Qwen/Qwen2-VL-7B-Instruct', # 32K context
312
- # Large Language Models
313
- 'Qwen/Qwen2.5-Coder-32B-Instruct', # 131K context
314
- 'meta-llama/Llama-3.2-3B-Instruct', # 131K context
315
- 'meta-llama/Meta-Llama-3.1-8B-Instruct', # 131k context
316
- 'meta-llama/Meta-Llama-3.1-70B-Instruct', # 32K context
317
- 'meta-llama/Meta-Llama-3-70B-Instruct', # 8K context
318
- 'NousResearch/Hermes-3-Llama-3.1-70B', # 12K context
319
- 'Qwen/Qwen2.5-72B-Instruct', # 32K context
320
- 'deepseek-ai/DeepSeek-V2.5', # 8K context
321
- 'meta-llama/Meta-Llama-3.1-405B-Instruct', # 8K context
322
  ],
323
  value='Qwen/Qwen2.5-Coder-32B-Instruct',
324
  label="Select Hyperbolic Model",
325
  interactive=True
326
  )
327
-
328
- hyperbolic_interface = gr.load(
329
- name=hyperbolic_model.value,
330
- src=hyperbolic_gradio.registry,
331
- fill_height=True
332
- )
333
 
334
- def update_hyperbolic_model(new_model):
335
- return gr.load(
336
- name=new_model,
337
- src=hyperbolic_gradio.registry,
338
- fill_height=True
339
- )
340
 
341
  hyperbolic_model.change(
342
- fn=update_hyperbolic_model,
343
  inputs=[hyperbolic_model],
344
- outputs=[hyperbolic_interface]
345
  )
346
-
347
- gr.Markdown("""
348
- <div>
349
- <img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
350
- </div>
351
-
352
- **Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
353
- """)
354
  with gr.Tab("Qwen"):
355
  with gr.Row():
356
  qwen_model = gr.Dropdown(
357
  choices=[
358
- # Proprietary Qwen Models
359
  'qwen-turbo-latest',
360
  'qwen-turbo',
361
  'qwen-plus',
362
  'qwen-max',
363
- # Open Source Qwen Models
364
  'qwen1.5-110b-chat',
365
  'qwen1.5-72b-chat',
366
  'qwen1.5-32b-chat',
367
  'qwen1.5-14b-chat',
368
  'qwen1.5-7b-chat'
369
  ],
370
- value='qwen-turbo-latest', # Default to the latest turbo model
371
  label="Select Qwen Model",
372
  interactive=True
373
  )
374
-
375
- qwen_interface = gr.load(
376
- name=qwen_model.value,
377
- src=dashscope_gradio.registry,
378
- fill_height=True
379
- )
380
 
381
- def update_qwen_model(new_model):
382
- return gr.load(
383
- name=new_model,
384
- src=dashscope_gradio.registry,
385
- fill_height=True
386
- )
387
 
388
  qwen_model.change(
389
- fn=update_qwen_model,
390
  inputs=[qwen_model],
391
- outputs=[qwen_interface]
392
  )
393
-
394
- gr.Markdown("""
395
- **Note:** You need a DashScope API key to use these models. Get one at [DashScope](https://dashscope.aliyun.com/).
396
-
397
- Models available in two categories:
398
- - **Proprietary Models**:
399
- - Qwen Turbo: Fast responses for general tasks
400
- - Qwen Plus: Balanced performance and quality
401
- - Qwen Max: Highest quality responses
402
- - **Open Source Models**:
403
- - Available in various sizes from 7B to 110B parameters
404
- - Based on the Qwen 1.5 architecture
405
- """)
406
  with gr.Tab("Perplexity"):
407
  with gr.Row():
408
  perplexity_model = gr.Dropdown(
409
  choices=[
410
- # Sonar Models (Online)
411
- 'llama-3.1-sonar-small-128k-online', # 8B params
412
- 'llama-3.1-sonar-large-128k-online', # 70B params
413
- 'llama-3.1-sonar-huge-128k-online', # 405B params
414
- # Sonar Models (Chat)
415
- 'llama-3.1-sonar-small-128k-chat', # 8B params
416
- 'llama-3.1-sonar-large-128k-chat', # 70B params
417
- # Open Source Models
418
- 'llama-3.1-8b-instruct', # 8B params
419
- 'llama-3.1-70b-instruct' # 70B params
420
  ],
421
- value='llama-3.1-sonar-large-128k-online', # Default to large online model
422
  label="Select Perplexity Model",
423
  interactive=True
424
  )
425
 
426
- perplexity_interface = gr.load(
427
- name=perplexity_model.value,
428
- src=perplexity_gradio.registry,
429
- accept_token=True,
430
- fill_height=True
431
- )
432
-
433
- def update_perplexity_model(new_model):
434
- return gr.load(
435
- name=new_model,
436
- src=perplexity_gradio.registry,
437
- accept_token=True,
438
- fill_height=True
439
- )
440
 
441
  perplexity_model.change(
442
- fn=update_perplexity_model,
443
  inputs=[perplexity_model],
444
- outputs=[perplexity_interface]
445
  )
446
-
447
- gr.Markdown("""
448
- **Note:** Models are grouped into three categories:
449
- - **Sonar Online Models**: Include search capabilities (beta access required)
450
- - **Sonar Chat Models**: Standard chat models
451
- - **Open Source Models**: Based on Hugging Face implementations
452
-
453
- For access to Online LLMs features, please fill out the [beta access form](https://perplexity.typeform.com/apiaccessform?typeform-source=docs.perplexity.ai).
454
- """)
455
- with gr.Tab("DeepSeek-V2.5"):
456
- gr.load(
457
- name='deepseek-ai/DeepSeek-V2.5',
458
- src=hyperbolic_gradio.registry,
459
- fill_height=True
460
- )
461
- gr.Markdown("""
462
- <div>
463
- <img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
464
- </div>
465
-
466
- **Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
467
- """)
468
  with gr.Tab("Mistral"):
469
  with gr.Row():
470
  mistral_model = gr.Dropdown(
471
  choices=[
472
- # Premier Models
473
- 'mistral-large-latest', # Top-tier reasoning model (128k)
474
- 'pixtral-large-latest', # Frontier-class multimodal model (128k)
475
- 'ministral-3b-latest', # Best edge model (128k)
476
- 'ministral-8b-latest', # High performance edge model (128k)
477
- 'mistral-small-latest', # Enterprise-grade small model (32k)
478
- 'codestral-latest', # Code-specialized model (32k)
479
- 'mistral-embed', # Semantic text representation (8k)
480
- 'mistral-moderation-latest', # Content moderation service (8k)
481
- # Free Models
482
- 'pixtral-12b-2409', # Free 12B multimodal model (128k)
483
- 'open-mistral-nemo', # Multilingual model (128k)
484
- 'open-codestral-mamba' # Mamba-based coding model (256k)
485
  ],
486
- value='pixtral-large-latest', # pixtral for vision
487
  label="Select Mistral Model",
488
  interactive=True
489
  )
490
-
491
- mistral_interface = gr.load(
492
- name=mistral_model.value,
493
- src=mistral_gradio.registry,
494
- fill_height=True
495
- )
496
 
497
- def update_mistral_model(new_model):
498
- return gr.load(
499
- name=new_model,
500
- src=mistral_gradio.registry,
501
- fill_height=True
502
- )
503
 
504
  mistral_model.change(
505
- fn=update_mistral_model,
506
  inputs=[mistral_model],
507
- outputs=[mistral_interface],
508
  )
509
-
510
- gr.Markdown("""
511
- **Note:** You need a Mistral API key to use these models. Get one at [Mistral AI Platform](https://console.mistral.ai/).
512
-
513
- Models are grouped into two categories:
514
- - **Premier Models**: Require a paid API key
515
- - **Free Models**: Available with free API keys
516
-
517
- Each model has different context window sizes (from 8k to 256k tokens) and specialized capabilities.
518
- """)
519
  with gr.Tab("Fireworks"):
520
  with gr.Row():
521
  fireworks_model = gr.Dropdown(
522
  choices=[
523
- 'f1-preview', # Latest F1 preview model
524
- 'f1-mini-preview', # Smaller, faster model
525
  ],
526
- value='f1-preview', # Default to preview model
527
  label="Select Fireworks Model",
528
  interactive=True
529
  )
530
-
531
- fireworks_interface = gr.load(
532
- name=fireworks_model.value,
533
- src=fireworks_gradio.registry,
534
- fill_height=True
535
- )
536
 
537
- def update_fireworks_model(new_model):
538
- return gr.load(
539
- name=new_model,
540
- src=fireworks_gradio.registry,
541
- fill_height=True
542
- )
543
 
544
  fireworks_model.change(
545
- fn=update_fireworks_model,
546
  inputs=[fireworks_model],
547
- outputs=[fireworks_interface]
548
  )
549
-
550
- gr.Markdown("""
551
- **Note:** You need a Fireworks AI API key to use these models. Get one at [Fireworks AI](https://app.fireworks.ai/).
552
- """)
553
  with gr.Tab("Cerebras"):
554
  with gr.Row():
555
  cerebras_model = gr.Dropdown(
@@ -558,120 +385,87 @@ with gr.Blocks(fill_height=True) as demo:
558
  'llama3.1-70b',
559
  'llama3.1-405b'
560
  ],
561
- value='llama3.1-70b', # Default to mid-size model
562
  label="Select Cerebras Model",
563
  interactive=True
564
  )
565
-
566
- cerebras_interface = gr.load(
567
- name=cerebras_model.value,
568
- src=cerebras_gradio.registry,
569
- accept_token=True, # Added token acceptance
570
- fill_height=True
571
- )
572
 
573
- def update_cerebras_model(new_model):
574
- return gr.load(
575
- name=new_model,
576
- src=cerebras_gradio.registry,
577
- accept_token=True, # Added token acceptance
578
- fill_height=True
579
- )
580
 
581
  cerebras_model.change(
582
- fn=update_cerebras_model,
583
  inputs=[cerebras_model],
584
- outputs=[cerebras_interface]
585
  )
 
 
586
  with gr.Tab("Together"):
587
  with gr.Row():
588
  together_model = gr.Dropdown(
589
  choices=[
590
- # Vision Models
591
- 'meta-llama/Llama-Vision-Free', # 131k context (Free)
592
- 'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo', # 131k context
593
- 'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo', # 131k context
594
- # Meta Llama 3.x Models
595
- 'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo', # 131k context
596
- 'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', # 131k context
597
- 'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo', # 130k context
598
- 'meta-llama/Meta-Llama-3-8B-Instruct-Turbo', # 8k context
599
- 'meta-llama/Meta-Llama-3-70B-Instruct-Turbo', # 8k context
600
- 'meta-llama/Llama-3.2-3B-Instruct-Turbo', # 131k context
601
- 'meta-llama/Meta-Llama-3-8B-Instruct-Lite', # 8k context, INT4
602
- 'meta-llama/Meta-Llama-3-70B-Instruct-Lite', # 8k context, INT4
603
- 'meta-llama/Llama-3-8b-chat-hf', # 8k context
604
- 'meta-llama/Llama-3-70b-chat-hf', # 8k context
605
- # Other Large Models
606
- 'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF', # 32k context
607
- 'Qwen/Qwen2.5-Coder-32B-Instruct', # 32k context
608
- 'microsoft/WizardLM-2-8x22B', # 65k context
609
- 'google/gemma-2-27b-it', # 8k context
610
- 'google/gemma-2-9b-it', # 8k context
611
- 'databricks/dbrx-instruct', # 32k context
612
- # Mixtral Models
613
- 'mistralai/Mixtral-8x7B-Instruct-v0.1', # 32k context
614
- 'mistralai/Mixtral-8x22B-Instruct-v0.1', # 65k context
615
- # Qwen Models
616
- 'Qwen/Qwen2.5-7B-Instruct-Turbo', # 32k context
617
- 'Qwen/Qwen2.5-72B-Instruct-Turbo', # 32k context
618
- 'Qwen/Qwen2-72B-Instruct', # 32k context
619
- # Other Models
620
- 'deepseek-ai/deepseek-llm-67b-chat', # 4k context
621
- 'google/gemma-2b-it', # 8k context
622
- 'Gryphe/MythoMax-L2-13b', # 4k context
623
- 'meta-llama/Llama-2-13b-chat-hf', # 4k context
624
- 'mistralai/Mistral-7B-Instruct-v0.1', # 8k context
625
- 'mistralai/Mistral-7B-Instruct-v0.2', # 32k context
626
- 'mistralai/Mistral-7B-Instruct-v0.3', # 32k context
627
- 'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', # 32k context
628
- 'togethercomputer/StripedHyena-Nous-7B', # 32k context
629
- 'upstage/SOLAR-10.7B-Instruct-v1.0' # 4k context
630
  ],
631
- value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo', # Default to recommended vision model
632
  label="Select Together Model",
633
  interactive=True
634
  )
635
-
636
- together_interface = gr.load(
637
- name=together_model.value,
638
- src=together_gradio.registry,
639
- multimodal=True,
640
- fill_height=True
641
- )
642
 
643
- def update_together_model(new_model):
644
- return gr.load(
645
- name=new_model,
646
- src=together_gradio.registry,
647
- multimodal=True,
648
- fill_height=True
649
- )
650
 
651
  together_model.change(
652
- fn=update_together_model,
653
  inputs=[together_model],
654
- outputs=[together_interface]
655
  )
656
-
657
- gr.Markdown("""
658
- **Note:** You need a Together AI API key to use these models. Get one at [Together AI](https://www.together.ai/).
659
- """)
660
  with gr.Tab("NVIDIA"):
661
  with gr.Row():
662
  nvidia_model = gr.Dropdown(
663
  choices=[
664
- # NVIDIA Models
665
  'nvidia/llama3-chatqa-1.5-70b',
666
  'nvidia/llama3-chatqa-1.5-8b',
667
  'nvidia-nemotron-4-340b-instruct',
668
- # Meta Models
669
- 'meta/llama-3.1-70b-instruct', # Added Llama 3.1 70B
670
  'meta/codellama-70b',
671
  'meta/llama2-70b',
672
  'meta/llama3-8b',
673
  'meta/llama3-70b',
674
- # Mistral Models
675
  'mistralai/codestral-22b-instruct-v0.1',
676
  'mistralai/mathstral-7b-v0.1',
677
  'mistralai/mistral-large-2-instruct',
@@ -680,7 +474,6 @@ with gr.Blocks(fill_height=True) as demo:
680
  'mistralai/mixtral-8x7b-instruct',
681
  'mistralai/mixtral-8x22b-instruct',
682
  'mistralai/mistral-large',
683
- # Google Models
684
  'google/gemma-2b',
685
  'google/gemma-7b',
686
  'google/gemma-2-2b-it',
@@ -690,57 +483,31 @@ with gr.Blocks(fill_height=True) as demo:
690
  'google/codegemma-7b',
691
  'google/recurrentgemma-2b',
692
  'google/shieldgemma-9b',
693
- # Microsoft Phi-3 Models
694
  'microsoft/phi-3-medium-128k-instruct',
695
  'microsoft/phi-3-medium-4k-instruct',
696
  'microsoft/phi-3-mini-128k-instruct',
697
  'microsoft/phi-3-mini-4k-instruct',
698
  'microsoft/phi-3-small-128k-instruct',
699
  'microsoft/phi-3-small-8k-instruct',
700
- # Other Models
701
  'qwen/qwen2-7b-instruct',
702
  'databricks/dbrx-instruct',
703
  'deepseek-ai/deepseek-coder-6.7b-instruct',
704
  'upstage/solar-10.7b-instruct',
705
  'snowflake/arctic'
706
  ],
707
- value='meta/llama-3.1-70b-instruct', # Changed default to Llama 3.1 70B
708
  label="Select NVIDIA Model",
709
  interactive=True
710
  )
711
-
712
- nvidia_interface = gr.load(
713
- name=nvidia_model.value,
714
- src=nvidia_gradio.registry,
715
- accept_token=True,
716
- fill_height=True
717
- )
718
 
719
- def update_nvidia_model(new_model):
720
- return gr.load(
721
- name=new_model,
722
- src=nvidia_gradio.registry,
723
- accept_token=True,
724
- fill_height=True
725
- )
726
 
727
  nvidia_model.change(
728
- fn=update_nvidia_model,
729
  inputs=[nvidia_model],
730
- outputs=[nvidia_interface]
731
  )
732
-
733
- gr.Markdown("""
734
- **Note:** You need an NVIDIA AI Foundation API key to use these models. Get one at [NVIDIA AI Foundation](https://www.nvidia.com/en-us/ai-data-science/foundation-models/).
735
-
736
- Models are organized by provider:
737
- - **NVIDIA**: Native models including Llama3-ChatQA and Nemotron
738
- - **Meta**: Llama family models
739
- - **Mistral**: Various Mistral and Mixtral models
740
- - **Google**: Gemma family models
741
- - **Microsoft**: Phi-3 series
742
- - And other providers including Qwen, Databricks, DeepSeek, etc.
743
- """)
744
 
745
  demo.launch(ssr_mode=False)
746
 
 
14
  import nvidia_gradio
15
  import dashscope_gradio
16
 
17
+ # Common helper functions for all tabs
18
+ def create_interface(model_name, src_registry, **kwargs):
19
+ return gr.load(
20
+ name=model_name,
21
+ src=src_registry,
22
+ fill_height=True,
23
+ **kwargs
24
+ )
25
 
26
+ def update_model(new_model, container, src_registry, **kwargs):
27
+ with container:
28
+ container.load_none()
29
+ new_interface = create_interface(new_model, src_registry, **kwargs)
30
+ new_interface.render()
31
 
32
  with gr.Blocks(fill_height=True) as demo:
33
+ # Meta Llama Tab
34
  with gr.Tab("Meta Llama"):
35
  with gr.Row():
36
  llama_model = gr.Dropdown(
37
  choices=[
38
+ 'Meta-Llama-3.2-1B-Instruct',
39
+ 'Meta-Llama-3.2-3B-Instruct',
40
+ 'Llama-3.2-11B-Vision-Instruct',
41
+ 'Llama-3.2-90B-Vision-Instruct',
42
+ 'Meta-Llama-3.1-8B-Instruct',
43
+ 'Meta-Llama-3.1-70B-Instruct',
44
+ 'Meta-Llama-3.1-405B-Instruct'
45
  ],
46
+ value='Llama-3.2-90B-Vision-Instruct',
47
  label="Select Llama Model",
48
  interactive=True
49
  )
50
 
51
+ with gr.Column() as llama_container:
52
+ llama_interface = create_interface(llama_model.value, sambanova_gradio.registry, multimodal=True)
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  llama_model.change(
55
+ fn=lambda new_model: update_model(new_model, llama_container, sambanova_gradio.registry, multimodal=True),
56
  inputs=[llama_model],
57
+ outputs=[]
58
  )
59
 
60
  gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
61
+
62
+ # Gemini Tab
63
  with gr.Tab("Gemini"):
64
  with gr.Row():
65
  gemini_model = gr.Dropdown(
66
  choices=[
67
+ 'gemini-1.5-flash',
68
+ 'gemini-1.5-flash-8b',
69
+ 'gemini-1.5-pro',
70
+ 'gemini-exp-1114'
71
  ],
72
+ value='gemini-1.5-pro',
73
  label="Select Gemini Model",
74
  interactive=True
75
  )
76
 
77
+ with gr.Column() as gemini_container:
78
+ gemini_interface = create_interface(gemini_model.value, gemini_gradio.registry)
 
 
 
 
 
 
 
 
 
 
79
 
80
  gemini_model.change(
81
+ fn=lambda new_model: update_model(new_model, gemini_container, gemini_gradio.registry),
82
  inputs=[gemini_model],
83
+ outputs=[]
84
  )
85
+
86
+ # ChatGPT Tab
87
  with gr.Tab("ChatGPT"):
88
  with gr.Row():
89
  model_choice = gr.Dropdown(
90
  choices=[
91
+ 'gpt-4o-2024-11-20',
92
+ 'gpt-4o',
93
+ 'gpt-4o-2024-08-06',
94
+ 'gpt-4o-2024-05-13',
95
+ 'chatgpt-4o-latest',
96
+ 'gpt-4o-mini',
97
+ 'gpt-4o-mini-2024-07-18',
98
+ 'o1-preview',
99
+ 'o1-preview-2024-09-12',
100
+ 'o1-mini',
101
+ 'o1-mini-2024-09-12',
102
+ 'gpt-4-turbo',
103
+ 'gpt-4-turbo-2024-04-09',
104
+ 'gpt-4-turbo-preview',
105
+ 'gpt-4-0125-preview',
106
+ 'gpt-4-1106-preview',
107
+ 'gpt-4',
108
+ 'gpt-4-0613'
109
  ],
110
+ value='gpt-4o-2024-11-20',
111
  label="Select Model",
112
  interactive=True
113
  )
 
 
 
 
 
 
114
 
115
+ with gr.Column() as chatgpt_container:
116
+ chatgpt_interface = create_interface(model_choice.value, openai_gradio.registry)
 
 
 
 
117
 
118
  model_choice.change(
119
+ fn=lambda new_model: update_model(new_model, chatgpt_container, openai_gradio.registry),
120
  inputs=[model_choice],
121
+ outputs=[]
122
  )
123
+
124
+ # Claude Tab
125
  with gr.Tab("Claude"):
126
  with gr.Row():
127
  claude_model = gr.Dropdown(
128
  choices=[
129
+ 'claude-3-5-sonnet-20241022',
130
+ 'claude-3-5-haiku-20241022',
131
+ 'claude-3-opus-20240229',
132
+ 'claude-3-sonnet-20240229',
133
+ 'claude-3-haiku-20240307'
134
  ],
135
+ value='claude-3-5-sonnet-20241022',
136
  label="Select Model",
137
  interactive=True
138
  )
 
 
 
 
 
 
 
139
 
140
+ with gr.Column() as claude_container:
141
+ claude_interface = create_interface(claude_model.value, anthropic_gradio.registry, accept_token=True)
 
 
 
 
 
142
 
143
  claude_model.change(
144
+ fn=lambda new_model: update_model(new_model, claude_container, anthropic_gradio.registry, accept_token=True),
145
  inputs=[claude_model],
146
+ outputs=[]
147
  )
148
+
149
+ # Grok Tab
150
  with gr.Tab("Grok"):
151
  with gr.Row():
152
  grok_model = gr.Dropdown(
 
158
  label="Select Grok Model",
159
  interactive=True
160
  )
 
 
 
 
 
 
161
 
162
+ with gr.Column() as grok_container:
163
+ grok_interface = create_interface(grok_model.value, xai_gradio.registry)
 
 
 
 
164
 
165
  grok_model.change(
166
+ fn=lambda new_model: update_model(new_model, grok_container, xai_gradio.registry),
167
  inputs=[grok_model],
168
+ outputs=[]
169
  )
170
+
171
+ # Hugging Face Tab
172
  with gr.Tab("Hugging Face"):
173
  with gr.Row():
174
  hf_model = gr.Dropdown(
175
  choices=[
 
176
  'Qwen/Qwen2.5-Coder-32B-Instruct',
177
  'Qwen/Qwen2.5-72B-Instruct',
178
  'meta-llama/Llama-3.1-70B-Instruct',
179
  'mistralai/Mixtral-8x7B-Instruct-v0.1',
 
180
  'meta-llama/Llama-3.1-8B-Instruct',
181
  'google/gemma-2-9b-it',
182
  'mistralai/Mistral-7B-v0.1',
183
  'meta-llama/Llama-2-7b-chat-hf',
 
184
  'meta-llama/Llama-3.2-3B-Instruct',
185
  'meta-llama/Llama-3.2-1B-Instruct',
186
  'Qwen/Qwen2.5-1.5B-Instruct',
187
  'microsoft/Phi-3.5-mini-instruct',
188
  'HuggingFaceTB/SmolLM2-1.7B-Instruct',
189
  'google/gemma-2-2b-it',
 
190
  'meta-llama/Llama-3.2-3B',
191
  'meta-llama/Llama-3.2-1B',
192
  'openai-community/gpt2'
193
  ],
194
+ value='HuggingFaceTB/SmolLM2-1.7B-Instruct',
195
  label="Select Hugging Face Model",
196
  interactive=True
197
  )
 
 
 
 
 
 
198
 
199
+ with gr.Column() as hf_container:
200
+ hf_interface = create_interface(hf_model.value, "models")
 
 
 
 
201
 
202
  hf_model.change(
203
+ fn=lambda new_model: update_model(new_model, hf_container, "models"),
204
  inputs=[hf_model],
205
+ outputs=[]
206
  )
207
 
208
  gr.Markdown("""
209
  **Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication.
 
 
 
 
 
 
 
 
210
  """)
211
+
212
+ # Groq Tab
213
  with gr.Tab("Groq"):
214
  with gr.Row():
215
  groq_model = gr.Dropdown(
 
224
  'gemma2-9b-it',
225
  'gemma-7b-it'
226
  ],
227
+ value='llama3-groq-70b-8192-tool-use-preview',
228
  label="Select Groq Model",
229
  interactive=True
230
  )
 
 
 
 
 
 
231
 
232
+ with gr.Column() as groq_container:
233
+ groq_interface = create_interface(groq_model.value, groq_gradio.registry)
 
 
 
 
234
 
235
  groq_model.change(
236
+ fn=lambda new_model: update_model(new_model, groq_container, groq_gradio.registry),
237
  inputs=[groq_model],
238
+ outputs=[]
239
  )
240
+
241
+ # Hyperbolic Tab
 
 
242
  with gr.Tab("Hyperbolic"):
243
  with gr.Row():
244
  hyperbolic_model = gr.Dropdown(
245
  choices=[
246
+ 'Qwen/Qwen2.5-Coder-32B-Instruct',
247
+ 'meta-llama/Llama-3.2-3B-Instruct',
248
+ 'meta-llama/Meta-Llama-3.1-8B-Instruct',
249
+ 'meta-llama/Meta-Llama-3.1-70B-Instruct',
250
+ 'meta-llama/Meta-Llama-3-70B-Instruct',
251
+ 'NousResearch/Hermes-3-Llama-3.1-70B',
252
+ 'Qwen/Qwen2.5-72B-Instruct',
253
+ 'deepseek-ai/DeepSeek-V2.5',
254
+ 'meta-llama/Meta-Llama-3.1-405B-Instruct'
 
 
 
 
 
255
  ],
256
  value='Qwen/Qwen2.5-Coder-32B-Instruct',
257
  label="Select Hyperbolic Model",
258
  interactive=True
259
  )
 
 
 
 
 
 
260
 
261
+ with gr.Column() as hyperbolic_container:
262
+ hyperbolic_interface = create_interface(hyperbolic_model.value, hyperbolic_gradio.registry)
 
 
 
 
263
 
264
  hyperbolic_model.change(
265
+ fn=lambda new_model: update_model(new_model, hyperbolic_container, hyperbolic_gradio.registry),
266
  inputs=[hyperbolic_model],
267
+ outputs=[]
268
  )
269
+
270
+ # Qwen Tab
 
 
 
 
 
 
271
  with gr.Tab("Qwen"):
272
  with gr.Row():
273
  qwen_model = gr.Dropdown(
274
  choices=[
 
275
  'qwen-turbo-latest',
276
  'qwen-turbo',
277
  'qwen-plus',
278
  'qwen-max',
 
279
  'qwen1.5-110b-chat',
280
  'qwen1.5-72b-chat',
281
  'qwen1.5-32b-chat',
282
  'qwen1.5-14b-chat',
283
  'qwen1.5-7b-chat'
284
  ],
285
+ value='qwen-turbo-latest',
286
  label="Select Qwen Model",
287
  interactive=True
288
  )
 
 
 
 
 
 
289
 
290
+ with gr.Column() as qwen_container:
291
+ qwen_interface = create_interface(qwen_model.value, dashscope_gradio.registry)
 
 
 
 
292
 
293
  qwen_model.change(
294
+ fn=lambda new_model: update_model(new_model, qwen_container, dashscope_gradio.registry),
295
  inputs=[qwen_model],
296
+ outputs=[]
297
  )
298
+
299
+ # Perplexity Tab
 
 
 
 
 
 
 
 
 
 
 
300
  with gr.Tab("Perplexity"):
301
  with gr.Row():
302
  perplexity_model = gr.Dropdown(
303
  choices=[
304
+ 'llama-3.1-sonar-small-128k-online',
305
+ 'llama-3.1-sonar-large-128k-online',
306
+ 'llama-3.1-sonar-huge-128k-online',
307
+ 'llama-3.1-sonar-small-128k-chat',
308
+ 'llama-3.1-sonar-large-128k-chat',
309
+ 'llama-3.1-8b-instruct',
310
+ 'llama-3.1-70b-instruct'
 
 
 
311
  ],
312
+ value='llama-3.1-sonar-large-128k-online',
313
  label="Select Perplexity Model",
314
  interactive=True
315
  )
316
 
317
+ with gr.Column() as perplexity_container:
318
+ perplexity_interface = create_interface(perplexity_model.value, perplexity_gradio.registry, accept_token=True)
 
 
 
 
 
 
 
 
 
 
 
 
319
 
320
  perplexity_model.change(
321
+ fn=lambda new_model: update_model(new_model, perplexity_container, perplexity_gradio.registry, accept_token=True),
322
  inputs=[perplexity_model],
323
+ outputs=[]
324
  )
325
+
326
+ # Mistral Tab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327
  with gr.Tab("Mistral"):
328
  with gr.Row():
329
  mistral_model = gr.Dropdown(
330
  choices=[
331
+ 'mistral-large-latest',
332
+ 'pixtral-large-latest',
333
+ 'ministral-3b-latest',
334
+ 'ministral-8b-latest',
335
+ 'mistral-small-latest',
336
+ 'codestral-latest',
337
+ 'mistral-embed',
338
+ 'mistral-moderation-latest',
339
+ 'pixtral-12b-2409',
340
+ 'open-mistral-nemo',
341
+ 'open-codestral-mamba'
 
 
342
  ],
343
+ value='pixtral-large-latest',
344
  label="Select Mistral Model",
345
  interactive=True
346
  )
 
 
 
 
 
 
347
 
348
+ with gr.Column() as mistral_container:
349
+ mistral_interface = create_interface(mistral_model.value, mistral_gradio.registry)
 
 
 
 
350
 
351
  mistral_model.change(
352
+ fn=lambda new_model: update_model(new_model, mistral_container, mistral_gradio.registry),
353
  inputs=[mistral_model],
354
+ outputs=[]
355
  )
356
+
357
+ # Fireworks Tab
 
 
 
 
 
 
 
 
358
  with gr.Tab("Fireworks"):
359
  with gr.Row():
360
  fireworks_model = gr.Dropdown(
361
  choices=[
362
+ 'f1-preview',
363
+ 'f1-mini-preview'
364
  ],
365
+ value='f1-preview',
366
  label="Select Fireworks Model",
367
  interactive=True
368
  )
 
 
 
 
 
 
369
 
370
+ with gr.Column() as fireworks_container:
371
+ fireworks_interface = create_interface(fireworks_model.value, fireworks_gradio.registry)
 
 
 
 
372
 
373
  fireworks_model.change(
374
+ fn=lambda new_model: update_model(new_model, fireworks_container, fireworks_gradio.registry),
375
  inputs=[fireworks_model],
376
+ outputs=[]
377
  )
378
+
379
+ # Cerebras Tab
 
 
380
  with gr.Tab("Cerebras"):
381
  with gr.Row():
382
  cerebras_model = gr.Dropdown(
 
385
  'llama3.1-70b',
386
  'llama3.1-405b'
387
  ],
388
+ value='llama3.1-70b',
389
  label="Select Cerebras Model",
390
  interactive=True
391
  )
 
 
 
 
 
 
 
392
 
393
+ with gr.Column() as cerebras_container:
394
+ cerebras_interface = create_interface(cerebras_model.value, cerebras_gradio.registry, accept_token=True)
 
 
 
 
 
395
 
396
  cerebras_model.change(
397
+ fn=lambda new_model: update_model(new_model, cerebras_container, cerebras_gradio.registry, accept_token=True),
398
  inputs=[cerebras_model],
399
+ outputs=[]
400
  )
401
+
402
+ # Together Tab
403
  with gr.Tab("Together"):
404
  with gr.Row():
405
  together_model = gr.Dropdown(
406
  choices=[
407
+ 'meta-llama/Llama-Vision-Free',
408
+ 'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
409
+ 'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
410
+ 'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo',
411
+ 'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo',
412
+ 'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
413
+ 'meta-llama/Meta-Llama-3-8B-Instruct-Turbo',
414
+ 'meta-llama/Meta-Llama-3-70B-Instruct-Turbo',
415
+ 'meta-llama/Llama-3.2-3B-Instruct-Turbo',
416
+ 'meta-llama/Meta-Llama-3-8B-Instruct-Lite',
417
+ 'meta-llama/Meta-Llama-3-70B-Instruct-Lite',
418
+ 'meta-llama/Llama-3-8b-chat-hf',
419
+ 'meta-llama/Llama-3-70b-chat-hf',
420
+ 'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
421
+ 'Qwen/Qwen2.5-Coder-32B-Instruct',
422
+ 'microsoft/WizardLM-2-8x22B',
423
+ 'google/gemma-2-27b-it',
424
+ 'google/gemma-2-9b-it',
425
+ 'databricks/dbrx-instruct',
426
+ 'mistralai/Mixtral-8x7B-Instruct-v0.1',
427
+ 'mistralai/Mixtral-8x22B-Instruct-v0.1',
428
+ 'Qwen/Qwen2.5-7B-Instruct-Turbo',
429
+ 'Qwen/Qwen2.5-72B-Instruct-Turbo',
430
+ 'Qwen/Qwen2-72B-Instruct',
431
+ 'deepseek-ai/deepseek-llm-67b-chat',
432
+ 'google/gemma-2b-it',
433
+ 'Gryphe/MythoMax-L2-13b',
434
+ 'meta-llama/Llama-2-13b-chat-hf',
435
+ 'mistralai/Mistral-7B-Instruct-v0.1',
436
+ 'mistralai/Mistral-7B-Instruct-v0.2',
437
+ 'mistralai/Mistral-7B-Instruct-v0.3',
438
+ 'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO',
439
+ 'togethercomputer/StripedHyena-Nous-7B',
440
+ 'upstage/SOLAR-10.7B-Instruct-v1.0'
 
 
 
 
 
 
441
  ],
442
+ value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
443
  label="Select Together Model",
444
  interactive=True
445
  )
 
 
 
 
 
 
 
446
 
447
+ with gr.Column() as together_container:
448
+ together_interface = create_interface(together_model.value, together_gradio.registry, multimodal=True)
 
 
 
 
 
449
 
450
  together_model.change(
451
+ fn=lambda new_model: update_model(new_model, together_container, together_gradio.registry, multimodal=True),
452
  inputs=[together_model],
453
+ outputs=[]
454
  )
455
+
456
+ # NVIDIA Tab
 
 
457
  with gr.Tab("NVIDIA"):
458
  with gr.Row():
459
  nvidia_model = gr.Dropdown(
460
  choices=[
 
461
  'nvidia/llama3-chatqa-1.5-70b',
462
  'nvidia/llama3-chatqa-1.5-8b',
463
  'nvidia-nemotron-4-340b-instruct',
464
+ 'meta/llama-3.1-70b-instruct',
 
465
  'meta/codellama-70b',
466
  'meta/llama2-70b',
467
  'meta/llama3-8b',
468
  'meta/llama3-70b',
 
469
  'mistralai/codestral-22b-instruct-v0.1',
470
  'mistralai/mathstral-7b-v0.1',
471
  'mistralai/mistral-large-2-instruct',
 
474
  'mistralai/mixtral-8x7b-instruct',
475
  'mistralai/mixtral-8x22b-instruct',
476
  'mistralai/mistral-large',
 
477
  'google/gemma-2b',
478
  'google/gemma-7b',
479
  'google/gemma-2-2b-it',
 
483
  'google/codegemma-7b',
484
  'google/recurrentgemma-2b',
485
  'google/shieldgemma-9b',
 
486
  'microsoft/phi-3-medium-128k-instruct',
487
  'microsoft/phi-3-medium-4k-instruct',
488
  'microsoft/phi-3-mini-128k-instruct',
489
  'microsoft/phi-3-mini-4k-instruct',
490
  'microsoft/phi-3-small-128k-instruct',
491
  'microsoft/phi-3-small-8k-instruct',
 
492
  'qwen/qwen2-7b-instruct',
493
  'databricks/dbrx-instruct',
494
  'deepseek-ai/deepseek-coder-6.7b-instruct',
495
  'upstage/solar-10.7b-instruct',
496
  'snowflake/arctic'
497
  ],
498
+ value='meta/llama-3.1-70b-instruct',
499
  label="Select NVIDIA Model",
500
  interactive=True
501
  )
 
 
 
 
 
 
 
502
 
503
+ with gr.Column() as nvidia_container:
504
+ nvidia_interface = create_interface(nvidia_model.value, nvidia_gradio.registry, accept_token=True)
 
 
 
 
 
505
 
506
  nvidia_model.change(
507
+ fn=lambda new_model: update_model(new_model, nvidia_container, nvidia_gradio.registry, accept_token=True),
508
  inputs=[nvidia_model],
509
+ outputs=[]
510
  )
 
 
 
 
 
 
 
 
 
 
 
 
511
 
512
  demo.launch(ssr_mode=False)
513