Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
fix for model changing
Browse files
app.py
CHANGED
@@ -14,161 +14,139 @@ import together_gradio
|
|
14 |
import nvidia_gradio
|
15 |
import dashscope_gradio
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
with gr.Blocks(fill_height=True) as demo:
|
|
|
20 |
with gr.Tab("Meta Llama"):
|
21 |
with gr.Row():
|
22 |
llama_model = gr.Dropdown(
|
23 |
choices=[
|
24 |
-
'Meta-Llama-3.2-1B-Instruct',
|
25 |
-
'Meta-Llama-3.2-3B-Instruct',
|
26 |
-
'Llama-3.2-11B-Vision-Instruct',
|
27 |
-
'Llama-3.2-90B-Vision-Instruct',
|
28 |
-
'Meta-Llama-3.1-8B-Instruct',
|
29 |
-
'Meta-Llama-3.1-70B-Instruct',
|
30 |
-
'Meta-Llama-3.1-405B-Instruct'
|
31 |
],
|
32 |
-
value='Llama-3.2-90B-Vision-Instruct',
|
33 |
label="Select Llama Model",
|
34 |
interactive=True
|
35 |
)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
src=sambanova_gradio.registry,
|
40 |
-
multimodal=True,
|
41 |
-
fill_height=True
|
42 |
-
)
|
43 |
-
|
44 |
-
def update_llama_model(new_model):
|
45 |
-
return gr.load(
|
46 |
-
name=new_model,
|
47 |
-
src=sambanova_gradio.registry,
|
48 |
-
multimodal=True,
|
49 |
-
fill_height=True
|
50 |
-
)
|
51 |
|
52 |
llama_model.change(
|
53 |
-
fn=
|
54 |
inputs=[llama_model],
|
55 |
-
outputs=[
|
56 |
)
|
57 |
|
58 |
gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
|
|
|
|
|
59 |
with gr.Tab("Gemini"):
|
60 |
with gr.Row():
|
61 |
gemini_model = gr.Dropdown(
|
62 |
choices=[
|
63 |
-
'gemini-1.5-flash',
|
64 |
-
'gemini-1.5-flash-8b',
|
65 |
-
'gemini-1.5-pro',
|
66 |
-
'gemini-exp-1114'
|
67 |
],
|
68 |
-
value='gemini-1.5-pro',
|
69 |
label="Select Gemini Model",
|
70 |
interactive=True
|
71 |
)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
src=gemini_gradio.registry,
|
76 |
-
fill_height=True
|
77 |
-
)
|
78 |
-
|
79 |
-
def update_gemini_model(new_model):
|
80 |
-
return gr.load(
|
81 |
-
name=new_model,
|
82 |
-
src=gemini_gradio.registry,
|
83 |
-
fill_height=True
|
84 |
-
)
|
85 |
|
86 |
gemini_model.change(
|
87 |
-
fn=
|
88 |
inputs=[gemini_model],
|
89 |
-
outputs=[
|
90 |
)
|
|
|
|
|
91 |
with gr.Tab("ChatGPT"):
|
92 |
with gr.Row():
|
93 |
model_choice = gr.Dropdown(
|
94 |
choices=[
|
95 |
-
'gpt-4o-2024-11-20',
|
96 |
-
'gpt-4o',
|
97 |
-
'gpt-4o-2024-08-06',
|
98 |
-
'gpt-4o-2024-05-13',
|
99 |
-
'chatgpt-4o-latest',
|
100 |
-
'gpt-4o-mini',
|
101 |
-
'gpt-4o-mini-2024-07-18',
|
102 |
-
'o1-preview',
|
103 |
-
'o1-preview-2024-09-12',
|
104 |
-
'o1-mini',
|
105 |
-
'o1-mini-2024-09-12',
|
106 |
-
'gpt-4-turbo',
|
107 |
-
'gpt-4-turbo-2024-04-09',
|
108 |
-
'gpt-4-turbo-preview',
|
109 |
-
'gpt-4-0125-preview',
|
110 |
-
'gpt-4-1106-preview',
|
111 |
-
'gpt-4',
|
112 |
-
'gpt-4-0613'
|
113 |
],
|
114 |
-
value='gpt-4o-2024-11-20',
|
115 |
label="Select Model",
|
116 |
interactive=True
|
117 |
)
|
118 |
-
|
119 |
-
chatgpt_interface = gr.load(
|
120 |
-
name=model_choice.value,
|
121 |
-
src=openai_gradio.registry,
|
122 |
-
fill_height=True
|
123 |
-
)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
name=new_model,
|
128 |
-
src=openai_gradio.registry,
|
129 |
-
fill_height=True
|
130 |
-
)
|
131 |
|
132 |
model_choice.change(
|
133 |
-
fn=update_model,
|
134 |
inputs=[model_choice],
|
135 |
-
outputs=[
|
136 |
)
|
|
|
|
|
137 |
with gr.Tab("Claude"):
|
138 |
with gr.Row():
|
139 |
claude_model = gr.Dropdown(
|
140 |
choices=[
|
141 |
-
'claude-3-5-sonnet-20241022',
|
142 |
-
'claude-3-5-haiku-20241022',
|
143 |
-
'claude-3-opus-20240229',
|
144 |
-
'claude-3-sonnet-20240229',
|
145 |
-
'claude-3-haiku-20240307'
|
146 |
],
|
147 |
-
value='claude-3-5-sonnet-20241022',
|
148 |
label="Select Model",
|
149 |
interactive=True
|
150 |
)
|
151 |
-
|
152 |
-
claude_interface = gr.load(
|
153 |
-
name=claude_model.value,
|
154 |
-
src=anthropic_gradio.registry,
|
155 |
-
accept_token=True,
|
156 |
-
fill_height=True
|
157 |
-
)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
name=new_model,
|
162 |
-
src=anthropic_gradio.registry,
|
163 |
-
accept_token=True,
|
164 |
-
fill_height=True
|
165 |
-
)
|
166 |
|
167 |
claude_model.change(
|
168 |
-
fn=
|
169 |
inputs=[claude_model],
|
170 |
-
outputs=[
|
171 |
)
|
|
|
|
|
172 |
with gr.Tab("Grok"):
|
173 |
with gr.Row():
|
174 |
grok_model = gr.Dropdown(
|
@@ -180,86 +158,58 @@ with gr.Blocks(fill_height=True) as demo:
|
|
180 |
label="Select Grok Model",
|
181 |
interactive=True
|
182 |
)
|
183 |
-
|
184 |
-
grok_interface = gr.load(
|
185 |
-
name=grok_model.value,
|
186 |
-
src=xai_gradio.registry,
|
187 |
-
fill_height=True
|
188 |
-
)
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
name=new_model,
|
193 |
-
src=xai_gradio.registry,
|
194 |
-
fill_height=True
|
195 |
-
)
|
196 |
|
197 |
grok_model.change(
|
198 |
-
fn=
|
199 |
inputs=[grok_model],
|
200 |
-
outputs=[
|
201 |
)
|
|
|
|
|
202 |
with gr.Tab("Hugging Face"):
|
203 |
with gr.Row():
|
204 |
hf_model = gr.Dropdown(
|
205 |
choices=[
|
206 |
-
# Latest Large Models
|
207 |
'Qwen/Qwen2.5-Coder-32B-Instruct',
|
208 |
'Qwen/Qwen2.5-72B-Instruct',
|
209 |
'meta-llama/Llama-3.1-70B-Instruct',
|
210 |
'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
211 |
-
# Mid-size Models
|
212 |
'meta-llama/Llama-3.1-8B-Instruct',
|
213 |
'google/gemma-2-9b-it',
|
214 |
'mistralai/Mistral-7B-v0.1',
|
215 |
'meta-llama/Llama-2-7b-chat-hf',
|
216 |
-
# Smaller Models
|
217 |
'meta-llama/Llama-3.2-3B-Instruct',
|
218 |
'meta-llama/Llama-3.2-1B-Instruct',
|
219 |
'Qwen/Qwen2.5-1.5B-Instruct',
|
220 |
'microsoft/Phi-3.5-mini-instruct',
|
221 |
'HuggingFaceTB/SmolLM2-1.7B-Instruct',
|
222 |
'google/gemma-2-2b-it',
|
223 |
-
# Base Models
|
224 |
'meta-llama/Llama-3.2-3B',
|
225 |
'meta-llama/Llama-3.2-1B',
|
226 |
'openai-community/gpt2'
|
227 |
],
|
228 |
-
value='HuggingFaceTB/SmolLM2-1.7B-Instruct',
|
229 |
label="Select Hugging Face Model",
|
230 |
interactive=True
|
231 |
)
|
232 |
-
|
233 |
-
hf_interface = gr.load(
|
234 |
-
name=hf_model.value,
|
235 |
-
src="models", # Use direct model loading from HF
|
236 |
-
fill_height=True
|
237 |
-
)
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
name=new_model,
|
242 |
-
src="models",
|
243 |
-
fill_height=True
|
244 |
-
)
|
245 |
|
246 |
hf_model.change(
|
247 |
-
fn=
|
248 |
inputs=[hf_model],
|
249 |
-
outputs=[
|
250 |
)
|
251 |
|
252 |
gr.Markdown("""
|
253 |
**Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication.
|
254 |
-
|
255 |
-
Models are organized by size:
|
256 |
-
- **Large Models**: 32B-72B parameters
|
257 |
-
- **Mid-size Models**: 7B-9B parameters
|
258 |
-
- **Smaller Models**: 1B-3B parameters
|
259 |
-
- **Base Models**: Original architectures
|
260 |
-
|
261 |
-
Visit [Hugging Face](https://huggingface.co/) to learn more about available models.
|
262 |
""")
|
|
|
|
|
263 |
with gr.Tab("Groq"):
|
264 |
with gr.Row():
|
265 |
groq_model = gr.Dropdown(
|
@@ -274,282 +224,159 @@ with gr.Blocks(fill_height=True) as demo:
|
|
274 |
'gemma2-9b-it',
|
275 |
'gemma-7b-it'
|
276 |
],
|
277 |
-
value='llama3-groq-70b-8192-tool-use-preview',
|
278 |
label="Select Groq Model",
|
279 |
interactive=True
|
280 |
)
|
281 |
-
|
282 |
-
groq_interface = gr.load(
|
283 |
-
name=groq_model.value,
|
284 |
-
src=groq_gradio.registry,
|
285 |
-
fill_height=True
|
286 |
-
)
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
name=new_model,
|
291 |
-
src=groq_gradio.registry,
|
292 |
-
fill_height=True
|
293 |
-
)
|
294 |
|
295 |
groq_model.change(
|
296 |
-
fn=
|
297 |
inputs=[groq_model],
|
298 |
-
outputs=[
|
299 |
)
|
300 |
-
|
301 |
-
|
302 |
-
**Note:** You need a Groq API key to use these models. Get one at [Groq Cloud](https://console.groq.com/).
|
303 |
-
""")
|
304 |
with gr.Tab("Hyperbolic"):
|
305 |
with gr.Row():
|
306 |
hyperbolic_model = gr.Dropdown(
|
307 |
choices=[
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
'
|
314 |
-
'
|
315 |
-
'
|
316 |
-
'meta-llama/Meta-Llama-3.1-
|
317 |
-
'meta-llama/Meta-Llama-3-70B-Instruct', # 8K context
|
318 |
-
'NousResearch/Hermes-3-Llama-3.1-70B', # 12K context
|
319 |
-
'Qwen/Qwen2.5-72B-Instruct', # 32K context
|
320 |
-
'deepseek-ai/DeepSeek-V2.5', # 8K context
|
321 |
-
'meta-llama/Meta-Llama-3.1-405B-Instruct', # 8K context
|
322 |
],
|
323 |
value='Qwen/Qwen2.5-Coder-32B-Instruct',
|
324 |
label="Select Hyperbolic Model",
|
325 |
interactive=True
|
326 |
)
|
327 |
-
|
328 |
-
hyperbolic_interface = gr.load(
|
329 |
-
name=hyperbolic_model.value,
|
330 |
-
src=hyperbolic_gradio.registry,
|
331 |
-
fill_height=True
|
332 |
-
)
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
name=new_model,
|
337 |
-
src=hyperbolic_gradio.registry,
|
338 |
-
fill_height=True
|
339 |
-
)
|
340 |
|
341 |
hyperbolic_model.change(
|
342 |
-
fn=
|
343 |
inputs=[hyperbolic_model],
|
344 |
-
outputs=[
|
345 |
)
|
346 |
-
|
347 |
-
|
348 |
-
<div>
|
349 |
-
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
|
350 |
-
</div>
|
351 |
-
|
352 |
-
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
|
353 |
-
""")
|
354 |
with gr.Tab("Qwen"):
|
355 |
with gr.Row():
|
356 |
qwen_model = gr.Dropdown(
|
357 |
choices=[
|
358 |
-
# Proprietary Qwen Models
|
359 |
'qwen-turbo-latest',
|
360 |
'qwen-turbo',
|
361 |
'qwen-plus',
|
362 |
'qwen-max',
|
363 |
-
# Open Source Qwen Models
|
364 |
'qwen1.5-110b-chat',
|
365 |
'qwen1.5-72b-chat',
|
366 |
'qwen1.5-32b-chat',
|
367 |
'qwen1.5-14b-chat',
|
368 |
'qwen1.5-7b-chat'
|
369 |
],
|
370 |
-
value='qwen-turbo-latest',
|
371 |
label="Select Qwen Model",
|
372 |
interactive=True
|
373 |
)
|
374 |
-
|
375 |
-
qwen_interface = gr.load(
|
376 |
-
name=qwen_model.value,
|
377 |
-
src=dashscope_gradio.registry,
|
378 |
-
fill_height=True
|
379 |
-
)
|
380 |
|
381 |
-
|
382 |
-
|
383 |
-
name=new_model,
|
384 |
-
src=dashscope_gradio.registry,
|
385 |
-
fill_height=True
|
386 |
-
)
|
387 |
|
388 |
qwen_model.change(
|
389 |
-
fn=
|
390 |
inputs=[qwen_model],
|
391 |
-
outputs=[
|
392 |
)
|
393 |
-
|
394 |
-
|
395 |
-
**Note:** You need a DashScope API key to use these models. Get one at [DashScope](https://dashscope.aliyun.com/).
|
396 |
-
|
397 |
-
Models available in two categories:
|
398 |
-
- **Proprietary Models**:
|
399 |
-
- Qwen Turbo: Fast responses for general tasks
|
400 |
-
- Qwen Plus: Balanced performance and quality
|
401 |
-
- Qwen Max: Highest quality responses
|
402 |
-
- **Open Source Models**:
|
403 |
-
- Available in various sizes from 7B to 110B parameters
|
404 |
-
- Based on the Qwen 1.5 architecture
|
405 |
-
""")
|
406 |
with gr.Tab("Perplexity"):
|
407 |
with gr.Row():
|
408 |
perplexity_model = gr.Dropdown(
|
409 |
choices=[
|
410 |
-
|
411 |
-
'llama-3.1-sonar-
|
412 |
-
'llama-3.1-sonar-
|
413 |
-
'llama-3.1-sonar-
|
414 |
-
|
415 |
-
'llama-3.1-
|
416 |
-
'llama-3.1-
|
417 |
-
# Open Source Models
|
418 |
-
'llama-3.1-8b-instruct', # 8B params
|
419 |
-
'llama-3.1-70b-instruct' # 70B params
|
420 |
],
|
421 |
-
value='llama-3.1-sonar-large-128k-online',
|
422 |
label="Select Perplexity Model",
|
423 |
interactive=True
|
424 |
)
|
425 |
|
426 |
-
|
427 |
-
|
428 |
-
src=perplexity_gradio.registry,
|
429 |
-
accept_token=True,
|
430 |
-
fill_height=True
|
431 |
-
)
|
432 |
-
|
433 |
-
def update_perplexity_model(new_model):
|
434 |
-
return gr.load(
|
435 |
-
name=new_model,
|
436 |
-
src=perplexity_gradio.registry,
|
437 |
-
accept_token=True,
|
438 |
-
fill_height=True
|
439 |
-
)
|
440 |
|
441 |
perplexity_model.change(
|
442 |
-
fn=
|
443 |
inputs=[perplexity_model],
|
444 |
-
outputs=[
|
445 |
)
|
446 |
-
|
447 |
-
|
448 |
-
**Note:** Models are grouped into three categories:
|
449 |
-
- **Sonar Online Models**: Include search capabilities (beta access required)
|
450 |
-
- **Sonar Chat Models**: Standard chat models
|
451 |
-
- **Open Source Models**: Based on Hugging Face implementations
|
452 |
-
|
453 |
-
For access to Online LLMs features, please fill out the [beta access form](https://perplexity.typeform.com/apiaccessform?typeform-source=docs.perplexity.ai).
|
454 |
-
""")
|
455 |
-
with gr.Tab("DeepSeek-V2.5"):
|
456 |
-
gr.load(
|
457 |
-
name='deepseek-ai/DeepSeek-V2.5',
|
458 |
-
src=hyperbolic_gradio.registry,
|
459 |
-
fill_height=True
|
460 |
-
)
|
461 |
-
gr.Markdown("""
|
462 |
-
<div>
|
463 |
-
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
|
464 |
-
</div>
|
465 |
-
|
466 |
-
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
|
467 |
-
""")
|
468 |
with gr.Tab("Mistral"):
|
469 |
with gr.Row():
|
470 |
mistral_model = gr.Dropdown(
|
471 |
choices=[
|
472 |
-
|
473 |
-
'
|
474 |
-
'
|
475 |
-
'ministral-
|
476 |
-
'
|
477 |
-
'
|
478 |
-
'
|
479 |
-
'mistral-
|
480 |
-
'
|
481 |
-
|
482 |
-
'
|
483 |
-
'open-mistral-nemo', # Multilingual model (128k)
|
484 |
-
'open-codestral-mamba' # Mamba-based coding model (256k)
|
485 |
],
|
486 |
-
value='pixtral-large-latest',
|
487 |
label="Select Mistral Model",
|
488 |
interactive=True
|
489 |
)
|
490 |
-
|
491 |
-
mistral_interface = gr.load(
|
492 |
-
name=mistral_model.value,
|
493 |
-
src=mistral_gradio.registry,
|
494 |
-
fill_height=True
|
495 |
-
)
|
496 |
|
497 |
-
|
498 |
-
|
499 |
-
name=new_model,
|
500 |
-
src=mistral_gradio.registry,
|
501 |
-
fill_height=True
|
502 |
-
)
|
503 |
|
504 |
mistral_model.change(
|
505 |
-
fn=
|
506 |
inputs=[mistral_model],
|
507 |
-
outputs=[
|
508 |
)
|
509 |
-
|
510 |
-
|
511 |
-
**Note:** You need a Mistral API key to use these models. Get one at [Mistral AI Platform](https://console.mistral.ai/).
|
512 |
-
|
513 |
-
Models are grouped into two categories:
|
514 |
-
- **Premier Models**: Require a paid API key
|
515 |
-
- **Free Models**: Available with free API keys
|
516 |
-
|
517 |
-
Each model has different context window sizes (from 8k to 256k tokens) and specialized capabilities.
|
518 |
-
""")
|
519 |
with gr.Tab("Fireworks"):
|
520 |
with gr.Row():
|
521 |
fireworks_model = gr.Dropdown(
|
522 |
choices=[
|
523 |
-
'f1-preview',
|
524 |
-
'f1-mini-preview'
|
525 |
],
|
526 |
-
value='f1-preview',
|
527 |
label="Select Fireworks Model",
|
528 |
interactive=True
|
529 |
)
|
530 |
-
|
531 |
-
fireworks_interface = gr.load(
|
532 |
-
name=fireworks_model.value,
|
533 |
-
src=fireworks_gradio.registry,
|
534 |
-
fill_height=True
|
535 |
-
)
|
536 |
|
537 |
-
|
538 |
-
|
539 |
-
name=new_model,
|
540 |
-
src=fireworks_gradio.registry,
|
541 |
-
fill_height=True
|
542 |
-
)
|
543 |
|
544 |
fireworks_model.change(
|
545 |
-
fn=
|
546 |
inputs=[fireworks_model],
|
547 |
-
outputs=[
|
548 |
)
|
549 |
-
|
550 |
-
|
551 |
-
**Note:** You need a Fireworks AI API key to use these models. Get one at [Fireworks AI](https://app.fireworks.ai/).
|
552 |
-
""")
|
553 |
with gr.Tab("Cerebras"):
|
554 |
with gr.Row():
|
555 |
cerebras_model = gr.Dropdown(
|
@@ -558,120 +385,87 @@ with gr.Blocks(fill_height=True) as demo:
|
|
558 |
'llama3.1-70b',
|
559 |
'llama3.1-405b'
|
560 |
],
|
561 |
-
value='llama3.1-70b',
|
562 |
label="Select Cerebras Model",
|
563 |
interactive=True
|
564 |
)
|
565 |
-
|
566 |
-
cerebras_interface = gr.load(
|
567 |
-
name=cerebras_model.value,
|
568 |
-
src=cerebras_gradio.registry,
|
569 |
-
accept_token=True, # Added token acceptance
|
570 |
-
fill_height=True
|
571 |
-
)
|
572 |
|
573 |
-
|
574 |
-
|
575 |
-
name=new_model,
|
576 |
-
src=cerebras_gradio.registry,
|
577 |
-
accept_token=True, # Added token acceptance
|
578 |
-
fill_height=True
|
579 |
-
)
|
580 |
|
581 |
cerebras_model.change(
|
582 |
-
fn=
|
583 |
inputs=[cerebras_model],
|
584 |
-
outputs=[
|
585 |
)
|
|
|
|
|
586 |
with gr.Tab("Together"):
|
587 |
with gr.Row():
|
588 |
together_model = gr.Dropdown(
|
589 |
choices=[
|
590 |
-
|
591 |
-
'meta-llama/Llama-Vision-
|
592 |
-
'meta-llama/Llama-3.2-
|
593 |
-
'meta-llama/Llama-3.
|
594 |
-
|
595 |
-
'meta-llama/Meta-Llama-3.1-
|
596 |
-
'meta-llama/Meta-Llama-3
|
597 |
-
'meta-llama/Meta-Llama-3
|
598 |
-
'meta-llama/
|
599 |
-
'meta-llama/Meta-Llama-3-
|
600 |
-
'meta-llama/Llama-3
|
601 |
-
'meta-llama/
|
602 |
-
'meta-llama/
|
603 |
-
'
|
604 |
-
'
|
605 |
-
|
606 |
-
'
|
607 |
-
'
|
608 |
-
'
|
609 |
-
'
|
610 |
-
'
|
611 |
-
'
|
612 |
-
|
613 |
-
'
|
614 |
-
'
|
615 |
-
|
616 |
-
'
|
617 |
-
'
|
618 |
-
'
|
619 |
-
|
620 |
-
'
|
621 |
-
'
|
622 |
-
'
|
623 |
-
'
|
624 |
-
'mistralai/Mistral-7B-Instruct-v0.1', # 8k context
|
625 |
-
'mistralai/Mistral-7B-Instruct-v0.2', # 32k context
|
626 |
-
'mistralai/Mistral-7B-Instruct-v0.3', # 32k context
|
627 |
-
'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', # 32k context
|
628 |
-
'togethercomputer/StripedHyena-Nous-7B', # 32k context
|
629 |
-
'upstage/SOLAR-10.7B-Instruct-v1.0' # 4k context
|
630 |
],
|
631 |
-
value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
|
632 |
label="Select Together Model",
|
633 |
interactive=True
|
634 |
)
|
635 |
-
|
636 |
-
together_interface = gr.load(
|
637 |
-
name=together_model.value,
|
638 |
-
src=together_gradio.registry,
|
639 |
-
multimodal=True,
|
640 |
-
fill_height=True
|
641 |
-
)
|
642 |
|
643 |
-
|
644 |
-
|
645 |
-
name=new_model,
|
646 |
-
src=together_gradio.registry,
|
647 |
-
multimodal=True,
|
648 |
-
fill_height=True
|
649 |
-
)
|
650 |
|
651 |
together_model.change(
|
652 |
-
fn=
|
653 |
inputs=[together_model],
|
654 |
-
outputs=[
|
655 |
)
|
656 |
-
|
657 |
-
|
658 |
-
**Note:** You need a Together AI API key to use these models. Get one at [Together AI](https://www.together.ai/).
|
659 |
-
""")
|
660 |
with gr.Tab("NVIDIA"):
|
661 |
with gr.Row():
|
662 |
nvidia_model = gr.Dropdown(
|
663 |
choices=[
|
664 |
-
# NVIDIA Models
|
665 |
'nvidia/llama3-chatqa-1.5-70b',
|
666 |
'nvidia/llama3-chatqa-1.5-8b',
|
667 |
'nvidia-nemotron-4-340b-instruct',
|
668 |
-
|
669 |
-
'meta/llama-3.1-70b-instruct', # Added Llama 3.1 70B
|
670 |
'meta/codellama-70b',
|
671 |
'meta/llama2-70b',
|
672 |
'meta/llama3-8b',
|
673 |
'meta/llama3-70b',
|
674 |
-
# Mistral Models
|
675 |
'mistralai/codestral-22b-instruct-v0.1',
|
676 |
'mistralai/mathstral-7b-v0.1',
|
677 |
'mistralai/mistral-large-2-instruct',
|
@@ -680,7 +474,6 @@ with gr.Blocks(fill_height=True) as demo:
|
|
680 |
'mistralai/mixtral-8x7b-instruct',
|
681 |
'mistralai/mixtral-8x22b-instruct',
|
682 |
'mistralai/mistral-large',
|
683 |
-
# Google Models
|
684 |
'google/gemma-2b',
|
685 |
'google/gemma-7b',
|
686 |
'google/gemma-2-2b-it',
|
@@ -690,57 +483,31 @@ with gr.Blocks(fill_height=True) as demo:
|
|
690 |
'google/codegemma-7b',
|
691 |
'google/recurrentgemma-2b',
|
692 |
'google/shieldgemma-9b',
|
693 |
-
# Microsoft Phi-3 Models
|
694 |
'microsoft/phi-3-medium-128k-instruct',
|
695 |
'microsoft/phi-3-medium-4k-instruct',
|
696 |
'microsoft/phi-3-mini-128k-instruct',
|
697 |
'microsoft/phi-3-mini-4k-instruct',
|
698 |
'microsoft/phi-3-small-128k-instruct',
|
699 |
'microsoft/phi-3-small-8k-instruct',
|
700 |
-
# Other Models
|
701 |
'qwen/qwen2-7b-instruct',
|
702 |
'databricks/dbrx-instruct',
|
703 |
'deepseek-ai/deepseek-coder-6.7b-instruct',
|
704 |
'upstage/solar-10.7b-instruct',
|
705 |
'snowflake/arctic'
|
706 |
],
|
707 |
-
value='meta/llama-3.1-70b-instruct',
|
708 |
label="Select NVIDIA Model",
|
709 |
interactive=True
|
710 |
)
|
711 |
-
|
712 |
-
nvidia_interface = gr.load(
|
713 |
-
name=nvidia_model.value,
|
714 |
-
src=nvidia_gradio.registry,
|
715 |
-
accept_token=True,
|
716 |
-
fill_height=True
|
717 |
-
)
|
718 |
|
719 |
-
|
720 |
-
|
721 |
-
name=new_model,
|
722 |
-
src=nvidia_gradio.registry,
|
723 |
-
accept_token=True,
|
724 |
-
fill_height=True
|
725 |
-
)
|
726 |
|
727 |
nvidia_model.change(
|
728 |
-
fn=
|
729 |
inputs=[nvidia_model],
|
730 |
-
outputs=[
|
731 |
)
|
732 |
-
|
733 |
-
gr.Markdown("""
|
734 |
-
**Note:** You need an NVIDIA AI Foundation API key to use these models. Get one at [NVIDIA AI Foundation](https://www.nvidia.com/en-us/ai-data-science/foundation-models/).
|
735 |
-
|
736 |
-
Models are organized by provider:
|
737 |
-
- **NVIDIA**: Native models including Llama3-ChatQA and Nemotron
|
738 |
-
- **Meta**: Llama family models
|
739 |
-
- **Mistral**: Various Mistral and Mixtral models
|
740 |
-
- **Google**: Gemma family models
|
741 |
-
- **Microsoft**: Phi-3 series
|
742 |
-
- And other providers including Qwen, Databricks, DeepSeek, etc.
|
743 |
-
""")
|
744 |
|
745 |
demo.launch(ssr_mode=False)
|
746 |
|
|
|
14 |
import nvidia_gradio
|
15 |
import dashscope_gradio
|
16 |
|
17 |
+
# Common helper functions for all tabs
|
18 |
+
def create_interface(model_name, src_registry, **kwargs):
|
19 |
+
return gr.load(
|
20 |
+
name=model_name,
|
21 |
+
src=src_registry,
|
22 |
+
fill_height=True,
|
23 |
+
**kwargs
|
24 |
+
)
|
25 |
|
26 |
+
def update_model(new_model, container, src_registry, **kwargs):
|
27 |
+
with container:
|
28 |
+
container.load_none()
|
29 |
+
new_interface = create_interface(new_model, src_registry, **kwargs)
|
30 |
+
new_interface.render()
|
31 |
|
32 |
with gr.Blocks(fill_height=True) as demo:
|
33 |
+
# Meta Llama Tab
|
34 |
with gr.Tab("Meta Llama"):
|
35 |
with gr.Row():
|
36 |
llama_model = gr.Dropdown(
|
37 |
choices=[
|
38 |
+
'Meta-Llama-3.2-1B-Instruct',
|
39 |
+
'Meta-Llama-3.2-3B-Instruct',
|
40 |
+
'Llama-3.2-11B-Vision-Instruct',
|
41 |
+
'Llama-3.2-90B-Vision-Instruct',
|
42 |
+
'Meta-Llama-3.1-8B-Instruct',
|
43 |
+
'Meta-Llama-3.1-70B-Instruct',
|
44 |
+
'Meta-Llama-3.1-405B-Instruct'
|
45 |
],
|
46 |
+
value='Llama-3.2-90B-Vision-Instruct',
|
47 |
label="Select Llama Model",
|
48 |
interactive=True
|
49 |
)
|
50 |
|
51 |
+
with gr.Column() as llama_container:
|
52 |
+
llama_interface = create_interface(llama_model.value, sambanova_gradio.registry, multimodal=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
llama_model.change(
|
55 |
+
fn=lambda new_model: update_model(new_model, llama_container, sambanova_gradio.registry, multimodal=True),
|
56 |
inputs=[llama_model],
|
57 |
+
outputs=[]
|
58 |
)
|
59 |
|
60 |
gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
|
61 |
+
|
62 |
+
# Gemini Tab
|
63 |
with gr.Tab("Gemini"):
|
64 |
with gr.Row():
|
65 |
gemini_model = gr.Dropdown(
|
66 |
choices=[
|
67 |
+
'gemini-1.5-flash',
|
68 |
+
'gemini-1.5-flash-8b',
|
69 |
+
'gemini-1.5-pro',
|
70 |
+
'gemini-exp-1114'
|
71 |
],
|
72 |
+
value='gemini-1.5-pro',
|
73 |
label="Select Gemini Model",
|
74 |
interactive=True
|
75 |
)
|
76 |
|
77 |
+
with gr.Column() as gemini_container:
|
78 |
+
gemini_interface = create_interface(gemini_model.value, gemini_gradio.registry)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
gemini_model.change(
|
81 |
+
fn=lambda new_model: update_model(new_model, gemini_container, gemini_gradio.registry),
|
82 |
inputs=[gemini_model],
|
83 |
+
outputs=[]
|
84 |
)
|
85 |
+
|
86 |
+
# ChatGPT Tab
|
87 |
with gr.Tab("ChatGPT"):
|
88 |
with gr.Row():
|
89 |
model_choice = gr.Dropdown(
|
90 |
choices=[
|
91 |
+
'gpt-4o-2024-11-20',
|
92 |
+
'gpt-4o',
|
93 |
+
'gpt-4o-2024-08-06',
|
94 |
+
'gpt-4o-2024-05-13',
|
95 |
+
'chatgpt-4o-latest',
|
96 |
+
'gpt-4o-mini',
|
97 |
+
'gpt-4o-mini-2024-07-18',
|
98 |
+
'o1-preview',
|
99 |
+
'o1-preview-2024-09-12',
|
100 |
+
'o1-mini',
|
101 |
+
'o1-mini-2024-09-12',
|
102 |
+
'gpt-4-turbo',
|
103 |
+
'gpt-4-turbo-2024-04-09',
|
104 |
+
'gpt-4-turbo-preview',
|
105 |
+
'gpt-4-0125-preview',
|
106 |
+
'gpt-4-1106-preview',
|
107 |
+
'gpt-4',
|
108 |
+
'gpt-4-0613'
|
109 |
],
|
110 |
+
value='gpt-4o-2024-11-20',
|
111 |
label="Select Model",
|
112 |
interactive=True
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
with gr.Column() as chatgpt_container:
|
116 |
+
chatgpt_interface = create_interface(model_choice.value, openai_gradio.registry)
|
|
|
|
|
|
|
|
|
117 |
|
118 |
model_choice.change(
|
119 |
+
fn=lambda new_model: update_model(new_model, chatgpt_container, openai_gradio.registry),
|
120 |
inputs=[model_choice],
|
121 |
+
outputs=[]
|
122 |
)
|
123 |
+
|
124 |
+
# Claude Tab
|
125 |
with gr.Tab("Claude"):
|
126 |
with gr.Row():
|
127 |
claude_model = gr.Dropdown(
|
128 |
choices=[
|
129 |
+
'claude-3-5-sonnet-20241022',
|
130 |
+
'claude-3-5-haiku-20241022',
|
131 |
+
'claude-3-opus-20240229',
|
132 |
+
'claude-3-sonnet-20240229',
|
133 |
+
'claude-3-haiku-20240307'
|
134 |
],
|
135 |
+
value='claude-3-5-sonnet-20241022',
|
136 |
label="Select Model",
|
137 |
interactive=True
|
138 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
with gr.Column() as claude_container:
|
141 |
+
claude_interface = create_interface(claude_model.value, anthropic_gradio.registry, accept_token=True)
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
claude_model.change(
|
144 |
+
fn=lambda new_model: update_model(new_model, claude_container, anthropic_gradio.registry, accept_token=True),
|
145 |
inputs=[claude_model],
|
146 |
+
outputs=[]
|
147 |
)
|
148 |
+
|
149 |
+
# Grok Tab
|
150 |
with gr.Tab("Grok"):
|
151 |
with gr.Row():
|
152 |
grok_model = gr.Dropdown(
|
|
|
158 |
label="Select Grok Model",
|
159 |
interactive=True
|
160 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
with gr.Column() as grok_container:
|
163 |
+
grok_interface = create_interface(grok_model.value, xai_gradio.registry)
|
|
|
|
|
|
|
|
|
164 |
|
165 |
grok_model.change(
|
166 |
+
fn=lambda new_model: update_model(new_model, grok_container, xai_gradio.registry),
|
167 |
inputs=[grok_model],
|
168 |
+
outputs=[]
|
169 |
)
|
170 |
+
|
171 |
+
# Hugging Face Tab
|
172 |
with gr.Tab("Hugging Face"):
|
173 |
with gr.Row():
|
174 |
hf_model = gr.Dropdown(
|
175 |
choices=[
|
|
|
176 |
'Qwen/Qwen2.5-Coder-32B-Instruct',
|
177 |
'Qwen/Qwen2.5-72B-Instruct',
|
178 |
'meta-llama/Llama-3.1-70B-Instruct',
|
179 |
'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
|
|
180 |
'meta-llama/Llama-3.1-8B-Instruct',
|
181 |
'google/gemma-2-9b-it',
|
182 |
'mistralai/Mistral-7B-v0.1',
|
183 |
'meta-llama/Llama-2-7b-chat-hf',
|
|
|
184 |
'meta-llama/Llama-3.2-3B-Instruct',
|
185 |
'meta-llama/Llama-3.2-1B-Instruct',
|
186 |
'Qwen/Qwen2.5-1.5B-Instruct',
|
187 |
'microsoft/Phi-3.5-mini-instruct',
|
188 |
'HuggingFaceTB/SmolLM2-1.7B-Instruct',
|
189 |
'google/gemma-2-2b-it',
|
|
|
190 |
'meta-llama/Llama-3.2-3B',
|
191 |
'meta-llama/Llama-3.2-1B',
|
192 |
'openai-community/gpt2'
|
193 |
],
|
194 |
+
value='HuggingFaceTB/SmolLM2-1.7B-Instruct',
|
195 |
label="Select Hugging Face Model",
|
196 |
interactive=True
|
197 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
with gr.Column() as hf_container:
|
200 |
+
hf_interface = create_interface(hf_model.value, "models")
|
|
|
|
|
|
|
|
|
201 |
|
202 |
hf_model.change(
|
203 |
+
fn=lambda new_model: update_model(new_model, hf_container, "models"),
|
204 |
inputs=[hf_model],
|
205 |
+
outputs=[]
|
206 |
)
|
207 |
|
208 |
gr.Markdown("""
|
209 |
**Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
""")
|
211 |
+
|
212 |
+
# Groq Tab
|
213 |
with gr.Tab("Groq"):
|
214 |
with gr.Row():
|
215 |
groq_model = gr.Dropdown(
|
|
|
224 |
'gemma2-9b-it',
|
225 |
'gemma-7b-it'
|
226 |
],
|
227 |
+
value='llama3-groq-70b-8192-tool-use-preview',
|
228 |
label="Select Groq Model",
|
229 |
interactive=True
|
230 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
with gr.Column() as groq_container:
|
233 |
+
groq_interface = create_interface(groq_model.value, groq_gradio.registry)
|
|
|
|
|
|
|
|
|
234 |
|
235 |
groq_model.change(
|
236 |
+
fn=lambda new_model: update_model(new_model, groq_container, groq_gradio.registry),
|
237 |
inputs=[groq_model],
|
238 |
+
outputs=[]
|
239 |
)
|
240 |
+
|
241 |
+
# Hyperbolic Tab
|
|
|
|
|
242 |
with gr.Tab("Hyperbolic"):
|
243 |
with gr.Row():
|
244 |
hyperbolic_model = gr.Dropdown(
|
245 |
choices=[
|
246 |
+
'Qwen/Qwen2.5-Coder-32B-Instruct',
|
247 |
+
'meta-llama/Llama-3.2-3B-Instruct',
|
248 |
+
'meta-llama/Meta-Llama-3.1-8B-Instruct',
|
249 |
+
'meta-llama/Meta-Llama-3.1-70B-Instruct',
|
250 |
+
'meta-llama/Meta-Llama-3-70B-Instruct',
|
251 |
+
'NousResearch/Hermes-3-Llama-3.1-70B',
|
252 |
+
'Qwen/Qwen2.5-72B-Instruct',
|
253 |
+
'deepseek-ai/DeepSeek-V2.5',
|
254 |
+
'meta-llama/Meta-Llama-3.1-405B-Instruct'
|
|
|
|
|
|
|
|
|
|
|
255 |
],
|
256 |
value='Qwen/Qwen2.5-Coder-32B-Instruct',
|
257 |
label="Select Hyperbolic Model",
|
258 |
interactive=True
|
259 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
+
with gr.Column() as hyperbolic_container:
|
262 |
+
hyperbolic_interface = create_interface(hyperbolic_model.value, hyperbolic_gradio.registry)
|
|
|
|
|
|
|
|
|
263 |
|
264 |
hyperbolic_model.change(
|
265 |
+
fn=lambda new_model: update_model(new_model, hyperbolic_container, hyperbolic_gradio.registry),
|
266 |
inputs=[hyperbolic_model],
|
267 |
+
outputs=[]
|
268 |
)
|
269 |
+
|
270 |
+
# Qwen Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
with gr.Tab("Qwen"):
|
272 |
with gr.Row():
|
273 |
qwen_model = gr.Dropdown(
|
274 |
choices=[
|
|
|
275 |
'qwen-turbo-latest',
|
276 |
'qwen-turbo',
|
277 |
'qwen-plus',
|
278 |
'qwen-max',
|
|
|
279 |
'qwen1.5-110b-chat',
|
280 |
'qwen1.5-72b-chat',
|
281 |
'qwen1.5-32b-chat',
|
282 |
'qwen1.5-14b-chat',
|
283 |
'qwen1.5-7b-chat'
|
284 |
],
|
285 |
+
value='qwen-turbo-latest',
|
286 |
label="Select Qwen Model",
|
287 |
interactive=True
|
288 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
with gr.Column() as qwen_container:
|
291 |
+
qwen_interface = create_interface(qwen_model.value, dashscope_gradio.registry)
|
|
|
|
|
|
|
|
|
292 |
|
293 |
qwen_model.change(
|
294 |
+
fn=lambda new_model: update_model(new_model, qwen_container, dashscope_gradio.registry),
|
295 |
inputs=[qwen_model],
|
296 |
+
outputs=[]
|
297 |
)
|
298 |
+
|
299 |
+
# Perplexity Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
with gr.Tab("Perplexity"):
|
301 |
with gr.Row():
|
302 |
perplexity_model = gr.Dropdown(
|
303 |
choices=[
|
304 |
+
'llama-3.1-sonar-small-128k-online',
|
305 |
+
'llama-3.1-sonar-large-128k-online',
|
306 |
+
'llama-3.1-sonar-huge-128k-online',
|
307 |
+
'llama-3.1-sonar-small-128k-chat',
|
308 |
+
'llama-3.1-sonar-large-128k-chat',
|
309 |
+
'llama-3.1-8b-instruct',
|
310 |
+
'llama-3.1-70b-instruct'
|
|
|
|
|
|
|
311 |
],
|
312 |
+
value='llama-3.1-sonar-large-128k-online',
|
313 |
label="Select Perplexity Model",
|
314 |
interactive=True
|
315 |
)
|
316 |
|
317 |
+
with gr.Column() as perplexity_container:
|
318 |
+
perplexity_interface = create_interface(perplexity_model.value, perplexity_gradio.registry, accept_token=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
perplexity_model.change(
|
321 |
+
fn=lambda new_model: update_model(new_model, perplexity_container, perplexity_gradio.registry, accept_token=True),
|
322 |
inputs=[perplexity_model],
|
323 |
+
outputs=[]
|
324 |
)
|
325 |
+
|
326 |
+
# Mistral Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
with gr.Tab("Mistral"):
|
328 |
with gr.Row():
|
329 |
mistral_model = gr.Dropdown(
|
330 |
choices=[
|
331 |
+
'mistral-large-latest',
|
332 |
+
'pixtral-large-latest',
|
333 |
+
'ministral-3b-latest',
|
334 |
+
'ministral-8b-latest',
|
335 |
+
'mistral-small-latest',
|
336 |
+
'codestral-latest',
|
337 |
+
'mistral-embed',
|
338 |
+
'mistral-moderation-latest',
|
339 |
+
'pixtral-12b-2409',
|
340 |
+
'open-mistral-nemo',
|
341 |
+
'open-codestral-mamba'
|
|
|
|
|
342 |
],
|
343 |
+
value='pixtral-large-latest',
|
344 |
label="Select Mistral Model",
|
345 |
interactive=True
|
346 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
+
with gr.Column() as mistral_container:
|
349 |
+
mistral_interface = create_interface(mistral_model.value, mistral_gradio.registry)
|
|
|
|
|
|
|
|
|
350 |
|
351 |
mistral_model.change(
|
352 |
+
fn=lambda new_model: update_model(new_model, mistral_container, mistral_gradio.registry),
|
353 |
inputs=[mistral_model],
|
354 |
+
outputs=[]
|
355 |
)
|
356 |
+
|
357 |
+
# Fireworks Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
with gr.Tab("Fireworks"):
|
359 |
with gr.Row():
|
360 |
fireworks_model = gr.Dropdown(
|
361 |
choices=[
|
362 |
+
'f1-preview',
|
363 |
+
'f1-mini-preview'
|
364 |
],
|
365 |
+
value='f1-preview',
|
366 |
label="Select Fireworks Model",
|
367 |
interactive=True
|
368 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
+
with gr.Column() as fireworks_container:
|
371 |
+
fireworks_interface = create_interface(fireworks_model.value, fireworks_gradio.registry)
|
|
|
|
|
|
|
|
|
372 |
|
373 |
fireworks_model.change(
|
374 |
+
fn=lambda new_model: update_model(new_model, fireworks_container, fireworks_gradio.registry),
|
375 |
inputs=[fireworks_model],
|
376 |
+
outputs=[]
|
377 |
)
|
378 |
+
|
379 |
+
# Cerebras Tab
|
|
|
|
|
380 |
with gr.Tab("Cerebras"):
|
381 |
with gr.Row():
|
382 |
cerebras_model = gr.Dropdown(
|
|
|
385 |
'llama3.1-70b',
|
386 |
'llama3.1-405b'
|
387 |
],
|
388 |
+
value='llama3.1-70b',
|
389 |
label="Select Cerebras Model",
|
390 |
interactive=True
|
391 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
+
with gr.Column() as cerebras_container:
|
394 |
+
cerebras_interface = create_interface(cerebras_model.value, cerebras_gradio.registry, accept_token=True)
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
cerebras_model.change(
|
397 |
+
fn=lambda new_model: update_model(new_model, cerebras_container, cerebras_gradio.registry, accept_token=True),
|
398 |
inputs=[cerebras_model],
|
399 |
+
outputs=[]
|
400 |
)
|
401 |
+
|
402 |
+
# Together Tab
|
403 |
with gr.Tab("Together"):
|
404 |
with gr.Row():
|
405 |
together_model = gr.Dropdown(
|
406 |
choices=[
|
407 |
+
'meta-llama/Llama-Vision-Free',
|
408 |
+
'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
|
409 |
+
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',
|
410 |
+
'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo',
|
411 |
+
'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo',
|
412 |
+
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',
|
413 |
+
'meta-llama/Meta-Llama-3-8B-Instruct-Turbo',
|
414 |
+
'meta-llama/Meta-Llama-3-70B-Instruct-Turbo',
|
415 |
+
'meta-llama/Llama-3.2-3B-Instruct-Turbo',
|
416 |
+
'meta-llama/Meta-Llama-3-8B-Instruct-Lite',
|
417 |
+
'meta-llama/Meta-Llama-3-70B-Instruct-Lite',
|
418 |
+
'meta-llama/Llama-3-8b-chat-hf',
|
419 |
+
'meta-llama/Llama-3-70b-chat-hf',
|
420 |
+
'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
|
421 |
+
'Qwen/Qwen2.5-Coder-32B-Instruct',
|
422 |
+
'microsoft/WizardLM-2-8x22B',
|
423 |
+
'google/gemma-2-27b-it',
|
424 |
+
'google/gemma-2-9b-it',
|
425 |
+
'databricks/dbrx-instruct',
|
426 |
+
'mistralai/Mixtral-8x7B-Instruct-v0.1',
|
427 |
+
'mistralai/Mixtral-8x22B-Instruct-v0.1',
|
428 |
+
'Qwen/Qwen2.5-7B-Instruct-Turbo',
|
429 |
+
'Qwen/Qwen2.5-72B-Instruct-Turbo',
|
430 |
+
'Qwen/Qwen2-72B-Instruct',
|
431 |
+
'deepseek-ai/deepseek-llm-67b-chat',
|
432 |
+
'google/gemma-2b-it',
|
433 |
+
'Gryphe/MythoMax-L2-13b',
|
434 |
+
'meta-llama/Llama-2-13b-chat-hf',
|
435 |
+
'mistralai/Mistral-7B-Instruct-v0.1',
|
436 |
+
'mistralai/Mistral-7B-Instruct-v0.2',
|
437 |
+
'mistralai/Mistral-7B-Instruct-v0.3',
|
438 |
+
'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO',
|
439 |
+
'togethercomputer/StripedHyena-Nous-7B',
|
440 |
+
'upstage/SOLAR-10.7B-Instruct-v1.0'
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
],
|
442 |
+
value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',
|
443 |
label="Select Together Model",
|
444 |
interactive=True
|
445 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
|
447 |
+
with gr.Column() as together_container:
|
448 |
+
together_interface = create_interface(together_model.value, together_gradio.registry, multimodal=True)
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
together_model.change(
|
451 |
+
fn=lambda new_model: update_model(new_model, together_container, together_gradio.registry, multimodal=True),
|
452 |
inputs=[together_model],
|
453 |
+
outputs=[]
|
454 |
)
|
455 |
+
|
456 |
+
# NVIDIA Tab
|
|
|
|
|
457 |
with gr.Tab("NVIDIA"):
|
458 |
with gr.Row():
|
459 |
nvidia_model = gr.Dropdown(
|
460 |
choices=[
|
|
|
461 |
'nvidia/llama3-chatqa-1.5-70b',
|
462 |
'nvidia/llama3-chatqa-1.5-8b',
|
463 |
'nvidia-nemotron-4-340b-instruct',
|
464 |
+
'meta/llama-3.1-70b-instruct',
|
|
|
465 |
'meta/codellama-70b',
|
466 |
'meta/llama2-70b',
|
467 |
'meta/llama3-8b',
|
468 |
'meta/llama3-70b',
|
|
|
469 |
'mistralai/codestral-22b-instruct-v0.1',
|
470 |
'mistralai/mathstral-7b-v0.1',
|
471 |
'mistralai/mistral-large-2-instruct',
|
|
|
474 |
'mistralai/mixtral-8x7b-instruct',
|
475 |
'mistralai/mixtral-8x22b-instruct',
|
476 |
'mistralai/mistral-large',
|
|
|
477 |
'google/gemma-2b',
|
478 |
'google/gemma-7b',
|
479 |
'google/gemma-2-2b-it',
|
|
|
483 |
'google/codegemma-7b',
|
484 |
'google/recurrentgemma-2b',
|
485 |
'google/shieldgemma-9b',
|
|
|
486 |
'microsoft/phi-3-medium-128k-instruct',
|
487 |
'microsoft/phi-3-medium-4k-instruct',
|
488 |
'microsoft/phi-3-mini-128k-instruct',
|
489 |
'microsoft/phi-3-mini-4k-instruct',
|
490 |
'microsoft/phi-3-small-128k-instruct',
|
491 |
'microsoft/phi-3-small-8k-instruct',
|
|
|
492 |
'qwen/qwen2-7b-instruct',
|
493 |
'databricks/dbrx-instruct',
|
494 |
'deepseek-ai/deepseek-coder-6.7b-instruct',
|
495 |
'upstage/solar-10.7b-instruct',
|
496 |
'snowflake/arctic'
|
497 |
],
|
498 |
+
value='meta/llama-3.1-70b-instruct',
|
499 |
label="Select NVIDIA Model",
|
500 |
interactive=True
|
501 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
|
503 |
+
with gr.Column() as nvidia_container:
|
504 |
+
nvidia_interface = create_interface(nvidia_model.value, nvidia_gradio.registry, accept_token=True)
|
|
|
|
|
|
|
|
|
|
|
505 |
|
506 |
nvidia_model.change(
|
507 |
+
fn=lambda new_model: update_model(new_model, nvidia_container, nvidia_gradio.registry, accept_token=True),
|
508 |
inputs=[nvidia_model],
|
509 |
+
outputs=[]
|
510 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
|
512 |
demo.launch(ssr_mode=False)
|
513 |
|