Spaces:
Runtime error
Runtime error
# Copyright 2021 Tomoki Hayashi | |
# MIT License (https://opensource.org/licenses/MIT) | |
"""StyleMelGAN Modules.""" | |
import copy | |
import logging | |
import math | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from parallel_wavegan.layers import PQMF | |
from parallel_wavegan.layers import TADEResBlock | |
from parallel_wavegan.models import MelGANDiscriminator as BaseDiscriminator | |
from parallel_wavegan.utils import read_hdf5 | |
class StyleMelGANGenerator(torch.nn.Module): | |
"""Style MelGAN generator module.""" | |
def __init__( | |
self, | |
in_channels=128, | |
aux_channels=80, | |
channels=64, | |
out_channels=1, | |
kernel_size=9, | |
dilation=2, | |
bias=True, | |
noise_upsample_scales=[11, 2, 2, 2], | |
noise_upsample_activation="LeakyReLU", | |
noise_upsample_activation_params={"negative_slope": 0.2}, | |
upsample_scales=[2, 2, 2, 2, 2, 2, 2, 2, 1], | |
upsample_mode="nearest", | |
gated_function="softmax", | |
use_weight_norm=True, | |
): | |
"""Initilize Style MelGAN generator. | |
Args: | |
in_channels (int): Number of input noise channels. | |
aux_channels (int): Number of auxiliary input channels. | |
channels (int): Number of channels for conv layer. | |
out_channels (int): Number of output channels. | |
kernel_size (int): Kernel size of conv layers. | |
dilation (int): Dilation factor for conv layers. | |
bias (bool): Whether to add bias parameter in convolution layers. | |
noise_upsample_scales (list): List of noise upsampling scales. | |
noise_upsample_activation (str): Activation function module name for noise upsampling. | |
noise_upsample_activation_params (dict): Hyperparameters for the above activation function. | |
upsample_scales (list): List of upsampling scales. | |
upsample_mode (str): Upsampling mode in TADE layer. | |
gated_function (str): Gated function in TADEResBlock ("softmax" or "sigmoid"). | |
use_weight_norm (bool): Whether to use weight norm. | |
If set to true, it will be applied to all of the conv layers. | |
""" | |
super().__init__() | |
self.in_channels = in_channels | |
noise_upsample = [] | |
in_chs = in_channels | |
for noise_upsample_scale in noise_upsample_scales: | |
# NOTE(kan-bayashi): How should we design noise upsampling part? | |
noise_upsample += [ | |
torch.nn.ConvTranspose1d( | |
in_chs, | |
channels, | |
noise_upsample_scale * 2, | |
stride=noise_upsample_scale, | |
padding=noise_upsample_scale // 2 + noise_upsample_scale % 2, | |
output_padding=noise_upsample_scale % 2, | |
bias=bias, | |
) | |
] | |
noise_upsample += [ | |
getattr(torch.nn, noise_upsample_activation)( | |
**noise_upsample_activation_params | |
) | |
] | |
in_chs = channels | |
self.noise_upsample = torch.nn.Sequential(*noise_upsample) | |
self.noise_upsample_factor = np.prod(noise_upsample_scales) | |
self.blocks = torch.nn.ModuleList() | |
aux_chs = aux_channels | |
for upsample_scale in upsample_scales: | |
self.blocks += [ | |
TADEResBlock( | |
in_channels=channels, | |
aux_channels=aux_chs, | |
kernel_size=kernel_size, | |
dilation=dilation, | |
bias=bias, | |
upsample_factor=upsample_scale, | |
upsample_mode=upsample_mode, | |
gated_function=gated_function, | |
), | |
] | |
aux_chs = channels | |
self.upsample_factor = np.prod(upsample_scales) | |
self.output_conv = torch.nn.Sequential( | |
torch.nn.Conv1d( | |
channels, | |
out_channels, | |
kernel_size, | |
1, | |
bias=bias, | |
padding=(kernel_size - 1) // 2, | |
), | |
torch.nn.Tanh(), | |
) | |
# apply weight norm | |
if use_weight_norm: | |
self.apply_weight_norm() | |
# reset parameters | |
self.reset_parameters() | |
def forward(self, c, z=None): | |
"""Calculate forward propagation. | |
Args: | |
c (Tensor): Auxiliary input tensor (B, channels, T). | |
z (Tensor): Input noise tensor (B, in_channels, 1). | |
Returns: | |
Tensor: Output tensor (B, out_channels, T ** prod(upsample_scales)). | |
""" | |
if z is None: | |
z = torch.randn(c.size(0), self.in_channels, 1).to( | |
device=c.device, | |
dtype=c.dtype, | |
) | |
x = self.noise_upsample(z) | |
for block in self.blocks: | |
x, c = block(x, c) | |
x = self.output_conv(x) | |
return x | |
def remove_weight_norm(self): | |
"""Remove weight normalization module from all of the layers.""" | |
def _remove_weight_norm(m): | |
try: | |
logging.debug(f"Weight norm is removed from {m}.") | |
torch.nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, torch.nn.Conv1d) or isinstance( | |
m, torch.nn.ConvTranspose1d | |
): | |
torch.nn.utils.weight_norm(m) | |
logging.debug(f"Weight norm is applied to {m}.") | |
self.apply(_apply_weight_norm) | |
def reset_parameters(self): | |
"""Reset parameters.""" | |
def _reset_parameters(m): | |
if isinstance(m, torch.nn.Conv1d) or isinstance( | |
m, torch.nn.ConvTranspose1d | |
): | |
m.weight.data.normal_(0.0, 0.02) | |
logging.debug(f"Reset parameters in {m}.") | |
self.apply(_reset_parameters) | |
def register_stats(self, stats): | |
"""Register stats for de-normalization as buffer. | |
Args: | |
stats (str): Path of statistics file (".npy" or ".h5"). | |
""" | |
assert stats.endswith(".h5") or stats.endswith(".npy") | |
if stats.endswith(".h5"): | |
mean = read_hdf5(stats, "mean").reshape(-1) | |
scale = read_hdf5(stats, "scale").reshape(-1) | |
else: | |
mean = np.load(stats)[0].reshape(-1) | |
scale = np.load(stats)[1].reshape(-1) | |
self.register_buffer("mean", torch.from_numpy(mean).float()) | |
self.register_buffer("scale", torch.from_numpy(scale).float()) | |
logging.info("Successfully registered stats as buffer.") | |
def inference(self, c, normalize_before=False): | |
"""Perform inference. | |
Args: | |
c (Union[Tensor, ndarray]): Input tensor (T, in_channels). | |
normalize_before (bool): Whether to perform normalization. | |
Returns: | |
Tensor: Output tensor (T ** prod(upsample_scales), out_channels). | |
""" | |
if not isinstance(c, torch.Tensor): | |
c = torch.tensor(c, dtype=torch.float).to(next(self.parameters()).device) | |
if normalize_before: | |
c = (c - self.mean) / self.scale | |
c = c.transpose(1, 0).unsqueeze(0) | |
# prepare noise input | |
noise_size = ( | |
1, | |
self.in_channels, | |
math.ceil(c.size(2) / self.noise_upsample_factor), | |
) | |
noise = torch.randn(*noise_size, dtype=torch.float).to( | |
next(self.parameters()).device | |
) | |
x = self.noise_upsample(noise) | |
# NOTE(kan-bayashi): To remove pop noise at the end of audio, perform padding | |
# for feature sequence and after generation cut the generated audio. This | |
# requires additional computation but it can prevent pop noise. | |
total_length = c.size(2) * self.upsample_factor | |
c = F.pad(c, (0, x.size(2) - c.size(2)), "replicate") | |
# This version causes pop noise. | |
# x = x[:, :, :c.size(2)] | |
for block in self.blocks: | |
x, c = block(x, c) | |
x = self.output_conv(x)[..., :total_length] | |
return x.squeeze(0).transpose(1, 0) | |
class StyleMelGANDiscriminator(torch.nn.Module): | |
"""Style MelGAN disciminator module.""" | |
def __init__( | |
self, | |
repeats=2, | |
window_sizes=[512, 1024, 2048, 4096], | |
pqmf_params=[ | |
[1, None, None, None], | |
[2, 62, 0.26700, 9.0], | |
[4, 62, 0.14200, 9.0], | |
[8, 62, 0.07949, 9.0], | |
], | |
discriminator_params={ | |
"out_channels": 1, | |
"kernel_sizes": [5, 3], | |
"channels": 16, | |
"max_downsample_channels": 512, | |
"bias": True, | |
"downsample_scales": [4, 4, 4, 1], | |
"nonlinear_activation": "LeakyReLU", | |
"nonlinear_activation_params": {"negative_slope": 0.2}, | |
"pad": "ReflectionPad1d", | |
"pad_params": {}, | |
}, | |
use_weight_norm=True, | |
): | |
"""Initilize Style MelGAN discriminator. | |
Args: | |
repeats (int): Number of repititons to apply RWD. | |
window_sizes (list): List of random window sizes. | |
pqmf_params (list): List of list of Parameters for PQMF modules | |
discriminator_params (dict): Parameters for base discriminator module. | |
use_weight_nom (bool): Whether to apply weight normalization. | |
""" | |
super().__init__() | |
# window size check | |
assert len(window_sizes) == len(pqmf_params) | |
sizes = [ws // p[0] for ws, p in zip(window_sizes, pqmf_params)] | |
assert len(window_sizes) == sum([sizes[0] == size for size in sizes]) | |
self.repeats = repeats | |
self.window_sizes = window_sizes | |
self.pqmfs = torch.nn.ModuleList() | |
self.discriminators = torch.nn.ModuleList() | |
for pqmf_param in pqmf_params: | |
d_params = copy.deepcopy(discriminator_params) | |
d_params["in_channels"] = pqmf_param[0] | |
if pqmf_param[0] == 1: | |
self.pqmfs += [torch.nn.Identity()] | |
else: | |
self.pqmfs += [PQMF(*pqmf_param)] | |
self.discriminators += [BaseDiscriminator(**d_params)] | |
# apply weight norm | |
if use_weight_norm: | |
self.apply_weight_norm() | |
# reset parameters | |
self.reset_parameters() | |
def forward(self, x): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Input tensor (B, 1, T). | |
Returns: | |
List: List of discriminator outputs, #items in the list will be | |
equal to repeats * #discriminators. | |
""" | |
outs = [] | |
for _ in range(self.repeats): | |
outs += self._forward(x) | |
return outs | |
def _forward(self, x): | |
outs = [] | |
for idx, (ws, pqmf, disc) in enumerate( | |
zip(self.window_sizes, self.pqmfs, self.discriminators) | |
): | |
# NOTE(kan-bayashi): Is it ok to apply different window for real and fake samples? | |
start_idx = np.random.randint(x.size(-1) - ws) | |
x_ = x[:, :, start_idx : start_idx + ws] | |
if idx == 0: | |
x_ = pqmf(x_) | |
else: | |
x_ = pqmf.analysis(x_) | |
outs += [disc(x_)] | |
return outs | |
def apply_weight_norm(self): | |
"""Apply weight normalization module from all of the layers.""" | |
def _apply_weight_norm(m): | |
if isinstance(m, torch.nn.Conv1d) or isinstance( | |
m, torch.nn.ConvTranspose1d | |
): | |
torch.nn.utils.weight_norm(m) | |
logging.debug(f"Weight norm is applied to {m}.") | |
self.apply(_apply_weight_norm) | |
def reset_parameters(self): | |
"""Reset parameters.""" | |
def _reset_parameters(m): | |
if isinstance(m, torch.nn.Conv1d) or isinstance( | |
m, torch.nn.ConvTranspose1d | |
): | |
m.weight.data.normal_(0.0, 0.02) | |
logging.debug(f"Reset parameters in {m}.") | |
self.apply(_reset_parameters) | |