Spaces:
Runtime error
Runtime error
File size: 12,393 Bytes
2b7bf83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# Copyright 2021 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
"""StyleMelGAN Modules."""
import copy
import logging
import math
import numpy as np
import torch
import torch.nn.functional as F
from parallel_wavegan.layers import PQMF
from parallel_wavegan.layers import TADEResBlock
from parallel_wavegan.models import MelGANDiscriminator as BaseDiscriminator
from parallel_wavegan.utils import read_hdf5
class StyleMelGANGenerator(torch.nn.Module):
"""Style MelGAN generator module."""
def __init__(
self,
in_channels=128,
aux_channels=80,
channels=64,
out_channels=1,
kernel_size=9,
dilation=2,
bias=True,
noise_upsample_scales=[11, 2, 2, 2],
noise_upsample_activation="LeakyReLU",
noise_upsample_activation_params={"negative_slope": 0.2},
upsample_scales=[2, 2, 2, 2, 2, 2, 2, 2, 1],
upsample_mode="nearest",
gated_function="softmax",
use_weight_norm=True,
):
"""Initilize Style MelGAN generator.
Args:
in_channels (int): Number of input noise channels.
aux_channels (int): Number of auxiliary input channels.
channels (int): Number of channels for conv layer.
out_channels (int): Number of output channels.
kernel_size (int): Kernel size of conv layers.
dilation (int): Dilation factor for conv layers.
bias (bool): Whether to add bias parameter in convolution layers.
noise_upsample_scales (list): List of noise upsampling scales.
noise_upsample_activation (str): Activation function module name for noise upsampling.
noise_upsample_activation_params (dict): Hyperparameters for the above activation function.
upsample_scales (list): List of upsampling scales.
upsample_mode (str): Upsampling mode in TADE layer.
gated_function (str): Gated function in TADEResBlock ("softmax" or "sigmoid").
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
"""
super().__init__()
self.in_channels = in_channels
noise_upsample = []
in_chs = in_channels
for noise_upsample_scale in noise_upsample_scales:
# NOTE(kan-bayashi): How should we design noise upsampling part?
noise_upsample += [
torch.nn.ConvTranspose1d(
in_chs,
channels,
noise_upsample_scale * 2,
stride=noise_upsample_scale,
padding=noise_upsample_scale // 2 + noise_upsample_scale % 2,
output_padding=noise_upsample_scale % 2,
bias=bias,
)
]
noise_upsample += [
getattr(torch.nn, noise_upsample_activation)(
**noise_upsample_activation_params
)
]
in_chs = channels
self.noise_upsample = torch.nn.Sequential(*noise_upsample)
self.noise_upsample_factor = np.prod(noise_upsample_scales)
self.blocks = torch.nn.ModuleList()
aux_chs = aux_channels
for upsample_scale in upsample_scales:
self.blocks += [
TADEResBlock(
in_channels=channels,
aux_channels=aux_chs,
kernel_size=kernel_size,
dilation=dilation,
bias=bias,
upsample_factor=upsample_scale,
upsample_mode=upsample_mode,
gated_function=gated_function,
),
]
aux_chs = channels
self.upsample_factor = np.prod(upsample_scales)
self.output_conv = torch.nn.Sequential(
torch.nn.Conv1d(
channels,
out_channels,
kernel_size,
1,
bias=bias,
padding=(kernel_size - 1) // 2,
),
torch.nn.Tanh(),
)
# apply weight norm
if use_weight_norm:
self.apply_weight_norm()
# reset parameters
self.reset_parameters()
def forward(self, c, z=None):
"""Calculate forward propagation.
Args:
c (Tensor): Auxiliary input tensor (B, channels, T).
z (Tensor): Input noise tensor (B, in_channels, 1).
Returns:
Tensor: Output tensor (B, out_channels, T ** prod(upsample_scales)).
"""
if z is None:
z = torch.randn(c.size(0), self.in_channels, 1).to(
device=c.device,
dtype=c.dtype,
)
x = self.noise_upsample(z)
for block in self.blocks:
x, c = block(x, c)
x = self.output_conv(x)
return x
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
logging.debug(f"Weight norm is removed from {m}.")
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, torch.nn.Conv1d) or isinstance(
m, torch.nn.ConvTranspose1d
):
torch.nn.utils.weight_norm(m)
logging.debug(f"Weight norm is applied to {m}.")
self.apply(_apply_weight_norm)
def reset_parameters(self):
"""Reset parameters."""
def _reset_parameters(m):
if isinstance(m, torch.nn.Conv1d) or isinstance(
m, torch.nn.ConvTranspose1d
):
m.weight.data.normal_(0.0, 0.02)
logging.debug(f"Reset parameters in {m}.")
self.apply(_reset_parameters)
def register_stats(self, stats):
"""Register stats for de-normalization as buffer.
Args:
stats (str): Path of statistics file (".npy" or ".h5").
"""
assert stats.endswith(".h5") or stats.endswith(".npy")
if stats.endswith(".h5"):
mean = read_hdf5(stats, "mean").reshape(-1)
scale = read_hdf5(stats, "scale").reshape(-1)
else:
mean = np.load(stats)[0].reshape(-1)
scale = np.load(stats)[1].reshape(-1)
self.register_buffer("mean", torch.from_numpy(mean).float())
self.register_buffer("scale", torch.from_numpy(scale).float())
logging.info("Successfully registered stats as buffer.")
def inference(self, c, normalize_before=False):
"""Perform inference.
Args:
c (Union[Tensor, ndarray]): Input tensor (T, in_channels).
normalize_before (bool): Whether to perform normalization.
Returns:
Tensor: Output tensor (T ** prod(upsample_scales), out_channels).
"""
if not isinstance(c, torch.Tensor):
c = torch.tensor(c, dtype=torch.float).to(next(self.parameters()).device)
if normalize_before:
c = (c - self.mean) / self.scale
c = c.transpose(1, 0).unsqueeze(0)
# prepare noise input
noise_size = (
1,
self.in_channels,
math.ceil(c.size(2) / self.noise_upsample_factor),
)
noise = torch.randn(*noise_size, dtype=torch.float).to(
next(self.parameters()).device
)
x = self.noise_upsample(noise)
# NOTE(kan-bayashi): To remove pop noise at the end of audio, perform padding
# for feature sequence and after generation cut the generated audio. This
# requires additional computation but it can prevent pop noise.
total_length = c.size(2) * self.upsample_factor
c = F.pad(c, (0, x.size(2) - c.size(2)), "replicate")
# This version causes pop noise.
# x = x[:, :, :c.size(2)]
for block in self.blocks:
x, c = block(x, c)
x = self.output_conv(x)[..., :total_length]
return x.squeeze(0).transpose(1, 0)
class StyleMelGANDiscriminator(torch.nn.Module):
"""Style MelGAN disciminator module."""
def __init__(
self,
repeats=2,
window_sizes=[512, 1024, 2048, 4096],
pqmf_params=[
[1, None, None, None],
[2, 62, 0.26700, 9.0],
[4, 62, 0.14200, 9.0],
[8, 62, 0.07949, 9.0],
],
discriminator_params={
"out_channels": 1,
"kernel_sizes": [5, 3],
"channels": 16,
"max_downsample_channels": 512,
"bias": True,
"downsample_scales": [4, 4, 4, 1],
"nonlinear_activation": "LeakyReLU",
"nonlinear_activation_params": {"negative_slope": 0.2},
"pad": "ReflectionPad1d",
"pad_params": {},
},
use_weight_norm=True,
):
"""Initilize Style MelGAN discriminator.
Args:
repeats (int): Number of repititons to apply RWD.
window_sizes (list): List of random window sizes.
pqmf_params (list): List of list of Parameters for PQMF modules
discriminator_params (dict): Parameters for base discriminator module.
use_weight_nom (bool): Whether to apply weight normalization.
"""
super().__init__()
# window size check
assert len(window_sizes) == len(pqmf_params)
sizes = [ws // p[0] for ws, p in zip(window_sizes, pqmf_params)]
assert len(window_sizes) == sum([sizes[0] == size for size in sizes])
self.repeats = repeats
self.window_sizes = window_sizes
self.pqmfs = torch.nn.ModuleList()
self.discriminators = torch.nn.ModuleList()
for pqmf_param in pqmf_params:
d_params = copy.deepcopy(discriminator_params)
d_params["in_channels"] = pqmf_param[0]
if pqmf_param[0] == 1:
self.pqmfs += [torch.nn.Identity()]
else:
self.pqmfs += [PQMF(*pqmf_param)]
self.discriminators += [BaseDiscriminator(**d_params)]
# apply weight norm
if use_weight_norm:
self.apply_weight_norm()
# reset parameters
self.reset_parameters()
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, 1, T).
Returns:
List: List of discriminator outputs, #items in the list will be
equal to repeats * #discriminators.
"""
outs = []
for _ in range(self.repeats):
outs += self._forward(x)
return outs
def _forward(self, x):
outs = []
for idx, (ws, pqmf, disc) in enumerate(
zip(self.window_sizes, self.pqmfs, self.discriminators)
):
# NOTE(kan-bayashi): Is it ok to apply different window for real and fake samples?
start_idx = np.random.randint(x.size(-1) - ws)
x_ = x[:, :, start_idx : start_idx + ws]
if idx == 0:
x_ = pqmf(x_)
else:
x_ = pqmf.analysis(x_)
outs += [disc(x_)]
return outs
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, torch.nn.Conv1d) or isinstance(
m, torch.nn.ConvTranspose1d
):
torch.nn.utils.weight_norm(m)
logging.debug(f"Weight norm is applied to {m}.")
self.apply(_apply_weight_norm)
def reset_parameters(self):
"""Reset parameters."""
def _reset_parameters(m):
if isinstance(m, torch.nn.Conv1d) or isinstance(
m, torch.nn.ConvTranspose1d
):
m.weight.data.normal_(0.0, 0.02)
logging.debug(f"Reset parameters in {m}.")
self.apply(_reset_parameters)
|