GPEN / train_simple.py
AK391
files
2782137
'''
This is a simplified training code of GPEN. It achieves comparable performance as in the paper.
@Created by rosinality
@Modified by yangxy ([email protected])
'''
import argparse
import math
import random
import os
import cv2
import glob
from tqdm import tqdm
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
import __init_paths
from data_loader.dataset_face import FaceDataset
from face_model.gpen_model import FullGenerator, Discriminator
from loss.id_loss import IDLoss
from distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
import lpips
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred, loss_funcs=None, fake_img=None, real_img=None, input_img=None):
smooth_l1_loss, id_loss = loss_funcs
loss = F.softplus(-fake_pred).mean()
loss_l1 = smooth_l1_loss(fake_img, real_img)
loss_id, __, __ = id_loss(fake_img, real_img, input_img)
loss += 1.0*loss_l1 + 1.0*loss_id
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def validation(model, lpips_func, args, device):
lq_files = sorted(glob.glob(os.path.join(args.val_dir, 'lq', '*.*')))
hq_files = sorted(glob.glob(os.path.join(args.val_dir, 'hq', '*.*')))
assert len(lq_files) == len(hq_files)
dist_sum = 0
model.eval()
for lq_f, hq_f in zip(lq_files, hq_files):
img_lq = cv2.imread(lq_f, cv2.IMREAD_COLOR)
img_t = torch.from_numpy(img_lq).to(device).permute(2, 0, 1).unsqueeze(0)
img_t = (img_t/255.-0.5)/0.5
img_t = F.interpolate(img_t, (args.size, args.size))
img_t = torch.flip(img_t, [1])
with torch.no_grad():
img_out, __ = model(img_t)
img_hq = lpips.im2tensor(lpips.load_image(hq_f)).to(device)
img_hq = F.interpolate(img_hq, (args.size, args.size))
dist_sum += lpips_func.forward(img_out, img_hq)
return dist_sum.data/len(lq_files)
def train(args, loader, generator, discriminator, losses, g_optim, d_optim, g_ema, lpips_func, device):
loader = sample_data(loader)
pbar = range(0, args.iter)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)
mean_path_length = 0
d_loss_val = 0
r1_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
path_loss = torch.tensor(0.0, device=device)
path_lengths = torch.tensor(0.0, device=device)
mean_path_length_avg = 0
loss_dict = {}
if args.distributed:
g_module = generator.module
d_module = discriminator.module
else:
g_module = generator
d_module = discriminator
accum = 0.5 ** (32 / (10 * 1000))
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print('Done!')
break
degraded_img, real_img = next(loader)
degraded_img = degraded_img.to(device)
real_img = real_img.to(device)
requires_grad(generator, False)
requires_grad(discriminator, True)
fake_img, _ = generator(degraded_img)
fake_pred = discriminator(fake_img)
real_pred = discriminator(real_img)
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict['d'] = d_loss
loss_dict['real_score'] = real_pred.mean()
loss_dict['fake_score'] = fake_pred.mean()
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
d_regularize = i % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred = discriminator(real_img)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
(args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward()
d_optim.step()
loss_dict['r1'] = r1_loss
requires_grad(generator, True)
requires_grad(discriminator, False)
fake_img, _ = generator(degraded_img)
fake_pred = discriminator(fake_img)
g_loss = g_nonsaturating_loss(fake_pred, losses, fake_img, real_img, degraded_img)
loss_dict['g'] = g_loss
generator.zero_grad()
g_loss.backward()
g_optim.step()
g_regularize = i % args.g_reg_every == 0
if g_regularize:
path_batch_size = max(1, args.batch // args.path_batch_shrink)
fake_img, latents = generator(degraded_img, return_latents=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img, latents, mean_path_length
)
generator.zero_grad()
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
if args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0]
weighted_path_loss.backward()
g_optim.step()
mean_path_length_avg = (
reduce_sum(mean_path_length).item() / get_world_size()
)
loss_dict['path'] = path_loss
loss_dict['path_length'] = path_lengths.mean()
accumulate(g_ema, g_module, accum)
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced['d'].mean().item()
g_loss_val = loss_reduced['g'].mean().item()
r1_val = loss_reduced['r1'].mean().item()
path_loss_val = loss_reduced['path'].mean().item()
real_score_val = loss_reduced['real_score'].mean().item()
fake_score_val = loss_reduced['fake_score'].mean().item()
path_length_val = loss_reduced['path_length'].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f'd: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; '
)
)
if i % args.save_freq == 0:
with torch.no_grad():
g_ema.eval()
sample, _ = g_ema(degraded_img)
sample = torch.cat((degraded_img, sample, real_img), 0)
utils.save_image(
sample,
f'{args.sample}/{str(i).zfill(6)}.png',
nrow=args.batch,
normalize=True,
range=(-1, 1),
)
lpips_value = validation(g_ema, lpips_func, args, device)
print(f'{i}/{args.iter}: lpips: {lpips_value.cpu().numpy()[0][0][0][0]}')
if i and i % args.save_freq == 0:
torch.save(
{
'g': g_module.state_dict(),
'd': d_module.state_dict(),
'g_ema': g_ema.state_dict(),
'g_optim': g_optim.state_dict(),
'd_optim': d_optim.state_dict(),
},
f'{args.ckpt}/{str(i).zfill(6)}.pth',
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True)
parser.add_argument('--base_dir', type=str, default='./')
parser.add_argument('--iter', type=int, default=4000000)
parser.add_argument('--batch', type=int, default=4)
parser.add_argument('--size', type=int, default=256)
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('--narrow', type=float, default=1.0)
parser.add_argument('--r1', type=float, default=10)
parser.add_argument('--path_regularize', type=float, default=2)
parser.add_argument('--path_batch_shrink', type=int, default=2)
parser.add_argument('--d_reg_every', type=int, default=16)
parser.add_argument('--g_reg_every', type=int, default=4)
parser.add_argument('--save_freq', type=int, default=10000)
parser.add_argument('--lr', type=float, default=0.002)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--ckpt', type=str, default='ckpts')
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--sample', type=str, default='sample')
parser.add_argument('--val_dir', type=str, default='val')
args = parser.parse_args()
os.makedirs(args.ckpt, exist_ok=True)
os.makedirs(args.sample, exist_ok=True)
device = 'cuda'
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
synchronize()
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
generator = FullGenerator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
discriminator = Discriminator(
args.size, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
g_ema = FullGenerator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
g_ema.eval()
accumulate(g_ema, generator, 0)
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
generator.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
if args.pretrain is not None:
print('load model:', args.pretrain)
ckpt = torch.load(args.pretrain)
generator.load_state_dict(ckpt['g'])
discriminator.load_state_dict(ckpt['d'])
g_ema.load_state_dict(ckpt['g_ema'])
g_optim.load_state_dict(ckpt['g_optim'])
d_optim.load_state_dict(ckpt['d_optim'])
smooth_l1_loss = torch.nn.SmoothL1Loss().to(device)
id_loss = IDLoss(args.base_dir, device, ckpt_dict=None)
lpips_func = lpips.LPIPS(net='alex',version='0.1').to(device)
if args.distributed:
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
id_loss = nn.parallel.DistributedDataParallel(
id_loss,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
dataset = FaceDataset(args.path, args.size)
loader = data.DataLoader(
dataset,
batch_size=args.batch,
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
drop_last=True,
)
train(args, loader, generator, discriminator, [smooth_l1_loss, id_loss], g_optim, d_optim, g_ema, lpips_func, device)