Spaces:
Running
Running
File size: 13,071 Bytes
2782137 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
'''
This is a simplified training code of GPEN. It achieves comparable performance as in the paper.
@Created by rosinality
@Modified by yangxy ([email protected])
'''
import argparse
import math
import random
import os
import cv2
import glob
from tqdm import tqdm
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
import __init_paths
from data_loader.dataset_face import FaceDataset
from face_model.gpen_model import FullGenerator, Discriminator
from loss.id_loss import IDLoss
from distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
import lpips
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred, loss_funcs=None, fake_img=None, real_img=None, input_img=None):
smooth_l1_loss, id_loss = loss_funcs
loss = F.softplus(-fake_pred).mean()
loss_l1 = smooth_l1_loss(fake_img, real_img)
loss_id, __, __ = id_loss(fake_img, real_img, input_img)
loss += 1.0*loss_l1 + 1.0*loss_id
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def validation(model, lpips_func, args, device):
lq_files = sorted(glob.glob(os.path.join(args.val_dir, 'lq', '*.*')))
hq_files = sorted(glob.glob(os.path.join(args.val_dir, 'hq', '*.*')))
assert len(lq_files) == len(hq_files)
dist_sum = 0
model.eval()
for lq_f, hq_f in zip(lq_files, hq_files):
img_lq = cv2.imread(lq_f, cv2.IMREAD_COLOR)
img_t = torch.from_numpy(img_lq).to(device).permute(2, 0, 1).unsqueeze(0)
img_t = (img_t/255.-0.5)/0.5
img_t = F.interpolate(img_t, (args.size, args.size))
img_t = torch.flip(img_t, [1])
with torch.no_grad():
img_out, __ = model(img_t)
img_hq = lpips.im2tensor(lpips.load_image(hq_f)).to(device)
img_hq = F.interpolate(img_hq, (args.size, args.size))
dist_sum += lpips_func.forward(img_out, img_hq)
return dist_sum.data/len(lq_files)
def train(args, loader, generator, discriminator, losses, g_optim, d_optim, g_ema, lpips_func, device):
loader = sample_data(loader)
pbar = range(0, args.iter)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)
mean_path_length = 0
d_loss_val = 0
r1_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
path_loss = torch.tensor(0.0, device=device)
path_lengths = torch.tensor(0.0, device=device)
mean_path_length_avg = 0
loss_dict = {}
if args.distributed:
g_module = generator.module
d_module = discriminator.module
else:
g_module = generator
d_module = discriminator
accum = 0.5 ** (32 / (10 * 1000))
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print('Done!')
break
degraded_img, real_img = next(loader)
degraded_img = degraded_img.to(device)
real_img = real_img.to(device)
requires_grad(generator, False)
requires_grad(discriminator, True)
fake_img, _ = generator(degraded_img)
fake_pred = discriminator(fake_img)
real_pred = discriminator(real_img)
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict['d'] = d_loss
loss_dict['real_score'] = real_pred.mean()
loss_dict['fake_score'] = fake_pred.mean()
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
d_regularize = i % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred = discriminator(real_img)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
(args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward()
d_optim.step()
loss_dict['r1'] = r1_loss
requires_grad(generator, True)
requires_grad(discriminator, False)
fake_img, _ = generator(degraded_img)
fake_pred = discriminator(fake_img)
g_loss = g_nonsaturating_loss(fake_pred, losses, fake_img, real_img, degraded_img)
loss_dict['g'] = g_loss
generator.zero_grad()
g_loss.backward()
g_optim.step()
g_regularize = i % args.g_reg_every == 0
if g_regularize:
path_batch_size = max(1, args.batch // args.path_batch_shrink)
fake_img, latents = generator(degraded_img, return_latents=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img, latents, mean_path_length
)
generator.zero_grad()
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
if args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0]
weighted_path_loss.backward()
g_optim.step()
mean_path_length_avg = (
reduce_sum(mean_path_length).item() / get_world_size()
)
loss_dict['path'] = path_loss
loss_dict['path_length'] = path_lengths.mean()
accumulate(g_ema, g_module, accum)
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced['d'].mean().item()
g_loss_val = loss_reduced['g'].mean().item()
r1_val = loss_reduced['r1'].mean().item()
path_loss_val = loss_reduced['path'].mean().item()
real_score_val = loss_reduced['real_score'].mean().item()
fake_score_val = loss_reduced['fake_score'].mean().item()
path_length_val = loss_reduced['path_length'].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f'd: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; '
)
)
if i % args.save_freq == 0:
with torch.no_grad():
g_ema.eval()
sample, _ = g_ema(degraded_img)
sample = torch.cat((degraded_img, sample, real_img), 0)
utils.save_image(
sample,
f'{args.sample}/{str(i).zfill(6)}.png',
nrow=args.batch,
normalize=True,
range=(-1, 1),
)
lpips_value = validation(g_ema, lpips_func, args, device)
print(f'{i}/{args.iter}: lpips: {lpips_value.cpu().numpy()[0][0][0][0]}')
if i and i % args.save_freq == 0:
torch.save(
{
'g': g_module.state_dict(),
'd': d_module.state_dict(),
'g_ema': g_ema.state_dict(),
'g_optim': g_optim.state_dict(),
'd_optim': d_optim.state_dict(),
},
f'{args.ckpt}/{str(i).zfill(6)}.pth',
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True)
parser.add_argument('--base_dir', type=str, default='./')
parser.add_argument('--iter', type=int, default=4000000)
parser.add_argument('--batch', type=int, default=4)
parser.add_argument('--size', type=int, default=256)
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('--narrow', type=float, default=1.0)
parser.add_argument('--r1', type=float, default=10)
parser.add_argument('--path_regularize', type=float, default=2)
parser.add_argument('--path_batch_shrink', type=int, default=2)
parser.add_argument('--d_reg_every', type=int, default=16)
parser.add_argument('--g_reg_every', type=int, default=4)
parser.add_argument('--save_freq', type=int, default=10000)
parser.add_argument('--lr', type=float, default=0.002)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--ckpt', type=str, default='ckpts')
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--sample', type=str, default='sample')
parser.add_argument('--val_dir', type=str, default='val')
args = parser.parse_args()
os.makedirs(args.ckpt, exist_ok=True)
os.makedirs(args.sample, exist_ok=True)
device = 'cuda'
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
synchronize()
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
generator = FullGenerator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
discriminator = Discriminator(
args.size, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
g_ema = FullGenerator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
g_ema.eval()
accumulate(g_ema, generator, 0)
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
generator.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
if args.pretrain is not None:
print('load model:', args.pretrain)
ckpt = torch.load(args.pretrain)
generator.load_state_dict(ckpt['g'])
discriminator.load_state_dict(ckpt['d'])
g_ema.load_state_dict(ckpt['g_ema'])
g_optim.load_state_dict(ckpt['g_optim'])
d_optim.load_state_dict(ckpt['d_optim'])
smooth_l1_loss = torch.nn.SmoothL1Loss().to(device)
id_loss = IDLoss(args.base_dir, device, ckpt_dict=None)
lpips_func = lpips.LPIPS(net='alex',version='0.1').to(device)
if args.distributed:
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
id_loss = nn.parallel.DistributedDataParallel(
id_loss,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
dataset = FaceDataset(args.path, args.size)
loader = data.DataLoader(
dataset,
batch_size=args.batch,
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
drop_last=True,
)
train(args, loader, generator, discriminator, [smooth_l1_loss, id_loss], g_optim, d_optim, g_ema, lpips_func, device)
|