Spaces:
aiqcamp
/
Running on Zero

fash / app.py
aiqcamp's picture
Update app.py
face3df verified
import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime
import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
default="booksforcharlie/stable-diffusion-inpainting",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--width",
type=int,
default=768,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10 and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)
# Pipeline
pipeline = CatVTONPipeline(
base_ckpt=args.base_model_path,
attn_ckpt=repo_path,
attn_ckpt_version="mix",
weight_dtype=init_weight_dtype(args.mixed_precision),
use_tf32=args.allow_tf32,
device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(
vae_scale_factor=8,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True
)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda',
)
@spaces.GPU(duration=120)
def submit_function(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
# person_image 객체에서 background와 layers[0]을 분리
person_image, mask = person_image["background"], person_image["layers"][0]
mask = Image.open(mask).convert("L")
# 만약 마스크가 전부 0(검정)이면 None 처리
if len(np.unique(np.array(mask))) == 1:
mask = None
else:
mask = np.array(mask)
mask[mask > 0] = 255
mask = Image.fromarray(mask)
tmp_folder = args.output_dir
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# If user didn't draw a mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
result_image = pipeline(
image=person_image,
condition_image=cloth_image,
mask=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)[0]
# Post-process & Save
masked_person = vis_mask(person_image, mask)
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
save_result_image.save(result_save_path)
if show_type == "result only":
return result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
return new_result_image
def person_example_fn(image_path):
return image_path
# Custom CSS
css = """
footer {visibility: hidden}
/* Main container styling */
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 20px;
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15);
}
/* Header styling */
h1, h2, h3 {
color: #2c3e50;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
/* Button styling */
button.primary-button {
background: linear-gradient(45deg, #4CAF50, #45a049);
border: none;
border-radius: 10px;
color: white;
padding: 12px 24px;
font-weight: bold;
transition: all 0.3s ease;
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3);
}
button.primary-button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.4);
}
/* Image container styling */
.image-container {
border-radius: 15px;
overflow: hidden;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
transition: transform 0.3s ease;
}
.image-container:hover {
transform: scale(1.02);
}
/* Radio button styling */
.radio-group label {
background-color: #ffffff;
border-radius: 8px;
padding: 10px 15px;
margin: 5px;
cursor: pointer;
transition: all 0.3s ease;
}
.radio-group input:checked + label {
background-color: #4CAF50;
color: white;
}
/* Slider styling */
.slider-container {
background: white;
padding: 15px;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
}
.slider {
height: 8px;
border-radius: 4px;
background: #e0e0e0;
}
.slider .thumb {
width: 20px;
height: 20px;
background: #4CAF50;
border-radius: 50%;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
}
/* Alert/warning text styling */
.warning-text {
color: #ff5252;
font-weight: bold;
text-align: center;
padding: 10px;
background: rgba(255,82,82,0.1);
border-radius: 8px;
margin: 10px 0;
}
/* Example gallery styling */
.example-gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
gap: 15px;
padding: 15px;
background: white;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
}
.example-item {
border-radius: 8px;
overflow: hidden;
transition: transform 0.3s ease;
}
.example-item:hover {
transform: scale(1.05);
}
"""
def app_gradio():
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", secondary_hue="blue"), css=css) as demo:
gr.Markdown(
"""
# 👔 Fashion Fit
Transform your look with AI-powered virtual clothing try-on!
"""
)
with gr.Row():
with gr.Column(scale=1, min_width=350):
with gr.Group():
gr.Markdown("### 📸 Upload Images")
with gr.Row():
image_path = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image = gr.ImageEditor(
interactive=True,
label="Person Image",
type="filepath",
elem_classes="image-container"
)
with gr.Row():
with gr.Column(scale=1, min_width=230):
cloth_image = gr.Image(
interactive=True,
label="Clothing Item",
type="filepath",
elem_classes="image-container"
)
with gr.Column(scale=1, min_width=120):
cloth_type = gr.Radio(
label="Clothing Type",
choices=["upper", "lower", "overall"],
value="upper",
elem_classes="radio-group"
)
submit = gr.Button("🚀 Generate Try-On", elem_classes="primary-button")
with gr.Accordion("⚙️ Advanced Settings", open=False):
num_inference_steps = gr.Slider(
label="Quality Level",
minimum=10,
maximum=100,
step=5,
value=50,
elem_classes="slider-container"
)
guidance_scale = gr.Slider(
label="Style Strength",
minimum=0.0,
maximum=7.5,
step=0.5,
value=2.5,
elem_classes="slider-container"
)
seed = gr.Slider(
label="Random Seed",
minimum=-1,
maximum=10000,
step=1,
value=42,
elem_classes="slider-container"
)
show_type = gr.Radio(
label="Display Mode",
choices=["result only", "input & result", "input & mask & result"],
value="input & mask & result",
elem_classes="radio-group"
)
with gr.Column(scale=2, min_width=500):
result_image = gr.Image(
interactive=False,
label="Final Result",
elem_classes="image-container"
)
with gr.Row():
root_path = "resource/demo/example"
with gr.Column():
gr.Markdown("#### 👤 Model Examples")
# elem_classes 인자를 제거해야 오류가 사라집니다.
men_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "men", file)
for file in os.listdir(os.path.join(root_path, "person", "men"))
],
examples_per_page=4,
inputs=image_path,
label="Men's Examples"
)
women_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "women", file)
for file in os.listdir(os.path.join(root_path, "person", "women"))
],
examples_per_page=4,
inputs=image_path,
label="Women's Examples"
)
gr.Markdown(
'<div class="info-text">Model examples courtesy of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a></div>'
)
with gr.Column():
gr.Markdown("#### 👕 Clothing Examples")
condition_upper_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "upper", file)
for file in os.listdir(os.path.join(root_path, "condition", "upper"))
],
examples_per_page=4,
inputs=cloth_image,
label="Upper Garments"
)
condition_overall_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "overall", file)
for file in os.listdir(os.path.join(root_path, "condition", "overall"))
],
examples_per_page=4,
inputs=cloth_image,
label="Full Outfits"
)
condition_person_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "person", file)
for file in os.listdir(os.path.join(root_path, "condition", "person"))
],
examples_per_page=4,
inputs=cloth_image,
label="Reference Styles"
)
gr.Markdown(
'<div class="info-text">Clothing examples sourced from various online retailers</div>'
)
image_path.change(
person_example_fn,
inputs=image_path,
outputs=person_image
)
submit.click(
submit_function,
[
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type,
],
result_image,
)
demo.queue().launch(share=True, show_error=True)
if __name__ == "__main__":
app_gradio()