Spaces:
aiqcamp
/
Running on Zero

File size: 16,499 Bytes
6a6227f
 
fe2cfb5
 
6a6227f
6eb1d7d
6a6227f
7b80416
6a6227f
 
 
 
 
6927e60
6eb1d7d
6a6227f
 
 
 
 
 
 
 
3e791eb
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133361b
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133361b
6a6227f
 
 
133361b
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133361b
6a6227f
 
 
 
 
 
 
 
 
133361b
6a6227f
133361b
 
 
 
 
 
6eb1d7d
6a6227f
6eb1d7d
133361b
6a6227f
 
640d658
6a6227f
 
 
 
 
 
 
 
 
133361b
6a6227f
 
133361b
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133361b
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133361b
 
6a6227f
 
 
133361b
6a6227f
 
 
 
 
 
 
 
 
133361b
 
6a6227f
 
 
 
133361b
6a6227f
 
 
 
133361b
9b85a19
e7295be
 
 
 
 
 
 
9b85a19
6a6227f
e7295be
 
 
 
 
 
9b85a19
e7295be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b85a19
e7295be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
face3df
e7295be
 
 
133361b
6a6227f
 
133361b
e7295be
 
 
 
 
 
6a6227f
e7295be
 
 
 
 
6a6227f
 
e7295be
 
 
 
 
 
 
 
 
face3df
e7295be
 
 
 
 
 
6a6227f
e7295be
face3df
133361b
e7295be
6a6227f
e7295be
 
 
 
 
 
6a6227f
 
e7295be
 
 
 
 
 
6a6227f
 
e7295be
 
 
 
 
 
6a6227f
 
e7295be
6a6227f
 
e7295be
6a6227f
266bdb2
6a6227f
e7295be
 
 
0b8361c
 
 
 
 
 
c1da3e0
0b8361c
 
133361b
 
0b8361c
 
 
c1da3e0
0b8361c
 
 
133361b
 
0b8361c
 
 
c1da3e0
0b8361c
 
 
 
133361b
0b8361c
 
 
 
133361b
 
0b8361c
 
 
c1da3e0
0b8361c
 
 
133361b
 
0b8361c
 
 
c1da3e0
0b8361c
 
 
133361b
 
0b8361c
 
 
c1da3e0
0b8361c
 
 
 
6a6227f
 
e7295be
 
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133361b
face3df
133361b
6a6227f
 
 
133361b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime

import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding

def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--base_model_path",
        type=str,
        default="booksforcharlie/stable-diffusion-inpainting",
        help=(
            "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
        ),
    )
    parser.add_argument(
        "--resume_path",
        type=str,
        default="zhengchong/CatVTON",
        help=(
            "The Path to the checkpoint of trained tryon model."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="resource/demo/output",
        help="The output directory where the model predictions will be written.",
    )
    parser.add_argument(
        "--width",
        type=int,
        default=768,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--height",
        type=int,
        default=1024,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--repaint",
        action="store_true",
        help="Whether to repaint the result image with the original background."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        default=True,
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="bf16",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10 and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args

def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid

args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)

# Pipeline
pipeline = CatVTONPipeline(
    base_ckpt=args.base_model_path,
    attn_ckpt=repo_path,
    attn_ckpt_version="mix",
    weight_dtype=init_weight_dtype(args.mixed_precision),
    use_tf32=args.allow_tf32,
    device='cuda'
)

# AutoMasker
mask_processor = VaeImageProcessor(
    vae_scale_factor=8,
    do_normalize=False,
    do_binarize=True,
    do_convert_grayscale=True
)
automasker = AutoMasker(
    densepose_ckpt=os.path.join(repo_path, "DensePose"),
    schp_ckpt=os.path.join(repo_path, "SCHP"),
    device='cuda',
)

@spaces.GPU(duration=120)
def submit_function(
    person_image,
    cloth_image,
    cloth_type,
    num_inference_steps,
    guidance_scale,
    seed,
    show_type
):
    # person_image 객체에서 background와 layers[0]을 분리
    person_image, mask = person_image["background"], person_image["layers"][0]
    mask = Image.open(mask).convert("L")

    # 만약 마스크가 전부 0(검정)이면 None 처리
    if len(np.unique(np.array(mask))) == 1:
        mask = None
    else:
        mask = np.array(mask)
        mask[mask > 0] = 255
        mask = Image.fromarray(mask)

    tmp_folder = args.output_dir
    date_str = datetime.now().strftime("%Y%m%d%H%M%S")
    result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
    if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
        os.makedirs(os.path.join(tmp_folder, date_str[:8]))

    generator = None
    if seed != -1:
        generator = torch.Generator(device='cuda').manual_seed(seed)

    person_image = Image.open(person_image).convert("RGB")
    cloth_image = Image.open(cloth_image).convert("RGB")
    person_image = resize_and_crop(person_image, (args.width, args.height))
    cloth_image = resize_and_padding(cloth_image, (args.width, args.height))

    # If user didn't draw a mask
    if mask is not None:
        mask = resize_and_crop(mask, (args.width, args.height))
    else:
        mask = automasker(
            person_image,
            cloth_type
        )['mask']
    mask = mask_processor.blur(mask, blur_factor=9)

    # Inference
    result_image = pipeline(
        image=person_image,
        condition_image=cloth_image,
        mask=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator
    )[0]

    # Post-process & Save
    masked_person = vis_mask(person_image, mask)
    save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
    save_result_image.save(result_save_path)

    if show_type == "result only":
        return result_image
    else:
        width, height = person_image.size
        if show_type == "input & result":
            condition_width = width // 2
            conditions = image_grid([person_image, cloth_image], 2, 1)
        else:
            condition_width = width // 3
            conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)

        conditions = conditions.resize((condition_width, height), Image.NEAREST)
        new_result_image = Image.new("RGB", (width + condition_width + 5, height))
        new_result_image.paste(conditions, (0, 0))
        new_result_image.paste(result_image, (condition_width + 5, 0))
        return new_result_image

def person_example_fn(image_path):
    return image_path

# Custom CSS
css = """
footer {visibility: hidden}

/* Main container styling */
.gradio-container {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    border-radius: 20px;
    box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15);
}

/* Header styling */
h1, h2, h3 {
    color: #2c3e50;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}

/* Button styling */
button.primary-button {
    background: linear-gradient(45deg, #4CAF50, #45a049);
    border: none;
    border-radius: 10px;
    color: white;
    padding: 12px 24px;
    font-weight: bold;
    transition: all 0.3s ease;
    box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3);
}

button.primary-button:hover {
    transform: translateY(-2px);
    box-shadow: 0 6px 20px rgba(76, 175, 80, 0.4);
}

/* Image container styling */
.image-container {
    border-radius: 15px;
    overflow: hidden;
    box-shadow: 0 4px 15px rgba(0,0,0,0.1);
    transition: transform 0.3s ease;
}

.image-container:hover {
    transform: scale(1.02);
}

/* Radio button styling */
.radio-group label {
    background-color: #ffffff;
    border-radius: 8px;
    padding: 10px 15px;
    margin: 5px;
    cursor: pointer;
    transition: all 0.3s ease;
}

.radio-group input:checked + label {
    background-color: #4CAF50;
    color: white;
}

/* Slider styling */
.slider-container {
    background: white;
    padding: 15px;
    border-radius: 10px;
    box-shadow: 0 2px 10px rgba(0,0,0,0.05);
}

.slider {
    height: 8px;
    border-radius: 4px;
    background: #e0e0e0;
}

.slider .thumb {
    width: 20px;
    height: 20px;
    background: #4CAF50;
    border-radius: 50%;
    box-shadow: 0 2px 5px rgba(0,0,0,0.2);
}

/* Alert/warning text styling */
.warning-text {
    color: #ff5252;
    font-weight: bold;
    text-align: center;
    padding: 10px;
    background: rgba(255,82,82,0.1);
    border-radius: 8px;
    margin: 10px 0;
}

/* Example gallery styling */
.example-gallery {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
    gap: 15px;
    padding: 15px;
    background: white;
    border-radius: 10px;
    box-shadow: 0 2px 10px rgba(0,0,0,0.05);
}

.example-item {
    border-radius: 8px;
    overflow: hidden;
    transition: transform 0.3s ease;
}

.example-item:hover {
    transform: scale(1.05);
}
"""

def app_gradio():
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", secondary_hue="blue"), css=css) as demo:
        gr.Markdown(
            """
            # 👔 Fashion Fit 
            Transform your look with AI-powered virtual clothing try-on!
            """
        )

        with gr.Row():
            with gr.Column(scale=1, min_width=350):
                with gr.Group():
                    gr.Markdown("### 📸 Upload Images")
                    with gr.Row():
                        image_path = gr.Image(
                            type="filepath",
                            interactive=True,
                            visible=False,
                        )
                        person_image = gr.ImageEditor(
                            interactive=True,
                            label="Person Image",
                            type="filepath",
                            elem_classes="image-container"
                        )

                    with gr.Row():
                        with gr.Column(scale=1, min_width=230):
                            cloth_image = gr.Image(
                                interactive=True,
                                label="Clothing Item",
                                type="filepath",
                                elem_classes="image-container"
                            )
                        with gr.Column(scale=1, min_width=120):
 
                            cloth_type = gr.Radio(
                                label="Clothing Type",
                                choices=["upper", "lower", "overall"],
                                value="upper",
                                elem_classes="radio-group"
                            )

                submit = gr.Button("🚀 Generate Try-On", elem_classes="primary-button")


                with gr.Accordion("⚙️ Advanced Settings", open=False):
                    num_inference_steps = gr.Slider(
                        label="Quality Level",
                        minimum=10,
                        maximum=100,
                        step=5,
                        value=50,
                        elem_classes="slider-container"
                    )
                    guidance_scale = gr.Slider(
                        label="Style Strength",
                        minimum=0.0,
                        maximum=7.5,
                        step=0.5,
                        value=2.5,
                        elem_classes="slider-container"
                    )
                    seed = gr.Slider(
                        label="Random Seed",
                        minimum=-1,
                        maximum=10000,
                        step=1,
                        value=42,
                        elem_classes="slider-container"
                    )
                    show_type = gr.Radio(
                        label="Display Mode",
                        choices=["result only", "input & result", "input & mask & result"],
                        value="input & mask & result",
                        elem_classes="radio-group"
                    )

            with gr.Column(scale=2, min_width=500):
                result_image = gr.Image(
                    interactive=False,
                    label="Final Result",
                    elem_classes="image-container"
                )
                with gr.Row():
                    root_path = "resource/demo/example"
                    with gr.Column():
                        gr.Markdown("#### 👤 Model Examples")
                        # elem_classes 인자를 제거해야 오류가 사라집니다.
                        men_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "person", "men", file)
                                for file in os.listdir(os.path.join(root_path, "person", "men"))
                            ],
                            examples_per_page=4,
                            inputs=image_path,
                            label="Men's Examples"
                        )
                        women_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "person", "women", file)
                                for file in os.listdir(os.path.join(root_path, "person", "women"))
                            ],
                            examples_per_page=4,
                            inputs=image_path,
                            label="Women's Examples"
                        )
                        gr.Markdown(
                            '<div class="info-text">Model examples courtesy of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a></div>'
                        )

                    with gr.Column():
                        gr.Markdown("#### 👕 Clothing Examples")
                        condition_upper_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "upper", file)
                                for file in os.listdir(os.path.join(root_path, "condition", "upper"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Upper Garments"
                        )
                        condition_overall_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "overall", file)
                                for file in os.listdir(os.path.join(root_path, "condition", "overall"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Full Outfits"
                        )
                        condition_person_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "person", file)
                                for file in os.listdir(os.path.join(root_path, "condition", "person"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Reference Styles"
                        )
                        gr.Markdown(
                            '<div class="info-text">Clothing examples sourced from various online retailers</div>'
                        )

            image_path.change(
                person_example_fn,
                inputs=image_path,
                outputs=person_image
            )

            submit.click(
                submit_function,
                [
                    person_image,
                    cloth_image,
                    cloth_type,
                    num_inference_steps,
                    guidance_scale,
                    seed,
                    show_type,
                ],
                result_image,
            )



    demo.queue().launch(share=True, show_error=True)

if __name__ == "__main__":
    app_gradio()