File size: 16,499 Bytes
6a6227f fe2cfb5 6a6227f 6eb1d7d 6a6227f 7b80416 6a6227f 6927e60 6eb1d7d 6a6227f 3e791eb 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6eb1d7d 6a6227f 6eb1d7d 133361b 6a6227f 640d658 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 6a6227f 133361b 9b85a19 e7295be 9b85a19 6a6227f e7295be 9b85a19 e7295be 9b85a19 e7295be face3df e7295be 133361b 6a6227f 133361b e7295be 6a6227f e7295be 6a6227f e7295be face3df e7295be 6a6227f e7295be face3df 133361b e7295be 6a6227f e7295be 6a6227f e7295be 6a6227f e7295be 6a6227f e7295be 6a6227f e7295be 6a6227f 266bdb2 6a6227f e7295be 0b8361c c1da3e0 0b8361c 133361b 0b8361c c1da3e0 0b8361c 133361b 0b8361c c1da3e0 0b8361c 133361b 0b8361c 133361b 0b8361c c1da3e0 0b8361c 133361b 0b8361c c1da3e0 0b8361c 133361b 0b8361c c1da3e0 0b8361c 6a6227f e7295be 6a6227f 133361b face3df 133361b 6a6227f 133361b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime
import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
default="booksforcharlie/stable-diffusion-inpainting",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--width",
type=int,
default=768,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10 and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)
# Pipeline
pipeline = CatVTONPipeline(
base_ckpt=args.base_model_path,
attn_ckpt=repo_path,
attn_ckpt_version="mix",
weight_dtype=init_weight_dtype(args.mixed_precision),
use_tf32=args.allow_tf32,
device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(
vae_scale_factor=8,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True
)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda',
)
@spaces.GPU(duration=120)
def submit_function(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
# person_image 객체에서 background와 layers[0]을 분리
person_image, mask = person_image["background"], person_image["layers"][0]
mask = Image.open(mask).convert("L")
# 만약 마스크가 전부 0(검정)이면 None 처리
if len(np.unique(np.array(mask))) == 1:
mask = None
else:
mask = np.array(mask)
mask[mask > 0] = 255
mask = Image.fromarray(mask)
tmp_folder = args.output_dir
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# If user didn't draw a mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
result_image = pipeline(
image=person_image,
condition_image=cloth_image,
mask=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)[0]
# Post-process & Save
masked_person = vis_mask(person_image, mask)
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
save_result_image.save(result_save_path)
if show_type == "result only":
return result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
return new_result_image
def person_example_fn(image_path):
return image_path
# Custom CSS
css = """
footer {visibility: hidden}
/* Main container styling */
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 20px;
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15);
}
/* Header styling */
h1, h2, h3 {
color: #2c3e50;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
/* Button styling */
button.primary-button {
background: linear-gradient(45deg, #4CAF50, #45a049);
border: none;
border-radius: 10px;
color: white;
padding: 12px 24px;
font-weight: bold;
transition: all 0.3s ease;
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3);
}
button.primary-button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.4);
}
/* Image container styling */
.image-container {
border-radius: 15px;
overflow: hidden;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
transition: transform 0.3s ease;
}
.image-container:hover {
transform: scale(1.02);
}
/* Radio button styling */
.radio-group label {
background-color: #ffffff;
border-radius: 8px;
padding: 10px 15px;
margin: 5px;
cursor: pointer;
transition: all 0.3s ease;
}
.radio-group input:checked + label {
background-color: #4CAF50;
color: white;
}
/* Slider styling */
.slider-container {
background: white;
padding: 15px;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
}
.slider {
height: 8px;
border-radius: 4px;
background: #e0e0e0;
}
.slider .thumb {
width: 20px;
height: 20px;
background: #4CAF50;
border-radius: 50%;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
}
/* Alert/warning text styling */
.warning-text {
color: #ff5252;
font-weight: bold;
text-align: center;
padding: 10px;
background: rgba(255,82,82,0.1);
border-radius: 8px;
margin: 10px 0;
}
/* Example gallery styling */
.example-gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
gap: 15px;
padding: 15px;
background: white;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.05);
}
.example-item {
border-radius: 8px;
overflow: hidden;
transition: transform 0.3s ease;
}
.example-item:hover {
transform: scale(1.05);
}
"""
def app_gradio():
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", secondary_hue="blue"), css=css) as demo:
gr.Markdown(
"""
# 👔 Fashion Fit
Transform your look with AI-powered virtual clothing try-on!
"""
)
with gr.Row():
with gr.Column(scale=1, min_width=350):
with gr.Group():
gr.Markdown("### 📸 Upload Images")
with gr.Row():
image_path = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image = gr.ImageEditor(
interactive=True,
label="Person Image",
type="filepath",
elem_classes="image-container"
)
with gr.Row():
with gr.Column(scale=1, min_width=230):
cloth_image = gr.Image(
interactive=True,
label="Clothing Item",
type="filepath",
elem_classes="image-container"
)
with gr.Column(scale=1, min_width=120):
cloth_type = gr.Radio(
label="Clothing Type",
choices=["upper", "lower", "overall"],
value="upper",
elem_classes="radio-group"
)
submit = gr.Button("🚀 Generate Try-On", elem_classes="primary-button")
with gr.Accordion("⚙️ Advanced Settings", open=False):
num_inference_steps = gr.Slider(
label="Quality Level",
minimum=10,
maximum=100,
step=5,
value=50,
elem_classes="slider-container"
)
guidance_scale = gr.Slider(
label="Style Strength",
minimum=0.0,
maximum=7.5,
step=0.5,
value=2.5,
elem_classes="slider-container"
)
seed = gr.Slider(
label="Random Seed",
minimum=-1,
maximum=10000,
step=1,
value=42,
elem_classes="slider-container"
)
show_type = gr.Radio(
label="Display Mode",
choices=["result only", "input & result", "input & mask & result"],
value="input & mask & result",
elem_classes="radio-group"
)
with gr.Column(scale=2, min_width=500):
result_image = gr.Image(
interactive=False,
label="Final Result",
elem_classes="image-container"
)
with gr.Row():
root_path = "resource/demo/example"
with gr.Column():
gr.Markdown("#### 👤 Model Examples")
# elem_classes 인자를 제거해야 오류가 사라집니다.
men_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "men", file)
for file in os.listdir(os.path.join(root_path, "person", "men"))
],
examples_per_page=4,
inputs=image_path,
label="Men's Examples"
)
women_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "women", file)
for file in os.listdir(os.path.join(root_path, "person", "women"))
],
examples_per_page=4,
inputs=image_path,
label="Women's Examples"
)
gr.Markdown(
'<div class="info-text">Model examples courtesy of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a></div>'
)
with gr.Column():
gr.Markdown("#### 👕 Clothing Examples")
condition_upper_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "upper", file)
for file in os.listdir(os.path.join(root_path, "condition", "upper"))
],
examples_per_page=4,
inputs=cloth_image,
label="Upper Garments"
)
condition_overall_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "overall", file)
for file in os.listdir(os.path.join(root_path, "condition", "overall"))
],
examples_per_page=4,
inputs=cloth_image,
label="Full Outfits"
)
condition_person_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "person", file)
for file in os.listdir(os.path.join(root_path, "condition", "person"))
],
examples_per_page=4,
inputs=cloth_image,
label="Reference Styles"
)
gr.Markdown(
'<div class="info-text">Clothing examples sourced from various online retailers</div>'
)
image_path.change(
person_example_fn,
inputs=image_path,
outputs=person_image
)
submit.click(
submit_function,
[
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type,
],
result_image,
)
demo.queue().launch(share=True, show_error=True)
if __name__ == "__main__":
app_gradio()
|