|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import pathlib |
|
|
|
import gradio as gr |
|
|
|
from model import Model |
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--theme', type=str) |
|
parser.add_argument('--share', action='store_true') |
|
parser.add_argument('--port', type=int) |
|
parser.add_argument('--disable-queue', |
|
dest='enable_queue', |
|
action='store_false') |
|
return parser.parse_args() |
|
|
|
|
|
def load_hairstyle_list() -> list[str]: |
|
with open('HairCLIP/mapper/hairstyle_list.txt') as f: |
|
lines = [line.strip() for line in f.readlines()] |
|
lines = [line[:-10] for line in lines] |
|
return lines |
|
|
|
|
|
def set_example_image(example: list) -> dict: |
|
return gr.Image.update(value=example[0]) |
|
|
|
|
|
def update_step2_components(choice: str) -> tuple[dict, dict]: |
|
return ( |
|
gr.Dropdown.update(visible=choice in ['hairstyle', 'both']), |
|
gr.Textbox.update(visible=choice in ['color', 'both']), |
|
) |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
model = Model(device=args.device) |
|
|
|
css = ''' |
|
h1#title { |
|
text-align: center; |
|
} |
|
img#teaser { |
|
max-width: 1000px; |
|
max-height: 600px; |
|
} |
|
''' |
|
|
|
with gr.Blocks(theme=args.theme, css=css) as demo: |
|
gr.Markdown('''<h1 id="title">HairCLIP</h1> |
|
|
|
''') |
|
with gr.Box(): |
|
gr.Markdown('## Step 1') |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_image = gr.Image(label='Input Image', |
|
type='file') |
|
with gr.Row(): |
|
preprocess_button = gr.Button('Preprocess') |
|
with gr.Column(): |
|
aligned_face = gr.Image(label='Aligned Face', |
|
type='pil', |
|
interactive=False) |
|
with gr.Column(): |
|
reconstructed_face = gr.Image(label='Reconstructed Face', |
|
type='numpy') |
|
latent = gr.Variable() |
|
|
|
with gr.Row(): |
|
paths = sorted(pathlib.Path('test').glob('*.jpg')) |
|
example_images = gr.Dataset(components=[input_image], |
|
samples=[[path.as_posix()] |
|
for path in paths]) |
|
|
|
with gr.Box(): |
|
gr.Markdown('## Step 2') |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
editing_type = gr.Radio(['hairstyle', 'color', 'both'], |
|
value='both', |
|
type='value', |
|
label='Editing Type') |
|
with gr.Row(): |
|
hairstyles = load_hairstyle_list() |
|
hairstyle_index = gr.Dropdown(hairstyles, |
|
value='afro', |
|
type='index', |
|
label='Hairstyle') |
|
with gr.Row(): |
|
color_description = gr.Textbox(value='red', |
|
label='Color') |
|
with gr.Row(): |
|
run_button = gr.Button('Run') |
|
|
|
with gr.Column(): |
|
result = gr.Image(label='Result') |
|
|
|
gr.Markdown( |
|
'<center></center>' |
|
) |
|
|
|
preprocess_button.click(fn=model.detect_and_align_face, |
|
inputs=[input_image], |
|
outputs=[aligned_face]) |
|
aligned_face.change(fn=model.reconstruct_face, |
|
inputs=[aligned_face], |
|
outputs=[reconstructed_face, latent]) |
|
editing_type.change(fn=update_step2_components, |
|
inputs=[editing_type], |
|
outputs=[hairstyle_index, color_description]) |
|
run_button.click(fn=model.generate, |
|
inputs=[ |
|
editing_type, |
|
hairstyle_index, |
|
color_description, |
|
latent, |
|
], |
|
outputs=[result]) |
|
example_images.click(fn=set_example_image, |
|
inputs=example_images, |
|
outputs=example_images.components) |
|
|
|
demo.launch( |
|
enable_queue=args.enable_queue, |
|
server_port=args.port, |
|
share=args.share, |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|