File size: 4,948 Bytes
71ed458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import pathlib
import gradio as gr
from model import Model
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
def load_hairstyle_list() -> list[str]:
with open('HairCLIP/mapper/hairstyle_list.txt') as f:
lines = [line.strip() for line in f.readlines()]
lines = [line[:-10] for line in lines]
return lines
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def update_step2_components(choice: str) -> tuple[dict, dict]:
return (
gr.Dropdown.update(visible=choice in ['hairstyle', 'both']),
gr.Textbox.update(visible=choice in ['color', 'both']),
)
def main():
args = parse_args()
model = Model(device=args.device)
css = '''
h1#title {
text-align: center;
}
img#teaser {
max-width: 1000px;
max-height: 600px;
}
'''
with gr.Blocks(theme=args.theme, css=css) as demo:
gr.Markdown('''<h1 id="title">HairCLIP</h1>
''')
with gr.Box():
gr.Markdown('## Step 1')
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image',
type='file')
with gr.Row():
preprocess_button = gr.Button('Preprocess')
with gr.Column():
aligned_face = gr.Image(label='Aligned Face',
type='pil',
interactive=False)
with gr.Column():
reconstructed_face = gr.Image(label='Reconstructed Face',
type='numpy')
latent = gr.Variable()
with gr.Row():
paths = sorted(pathlib.Path('test').glob('*.jpg'))
example_images = gr.Dataset(components=[input_image],
samples=[[path.as_posix()]
for path in paths])
with gr.Box():
gr.Markdown('## Step 2')
with gr.Row():
with gr.Column():
with gr.Row():
editing_type = gr.Radio(['hairstyle', 'color', 'both'],
value='both',
type='value',
label='Editing Type')
with gr.Row():
hairstyles = load_hairstyle_list()
hairstyle_index = gr.Dropdown(hairstyles,
value='afro',
type='index',
label='Hairstyle')
with gr.Row():
color_description = gr.Textbox(value='red',
label='Color')
with gr.Row():
run_button = gr.Button('Run')
with gr.Column():
result = gr.Image(label='Result')
gr.Markdown(
'<center></center>'
)
preprocess_button.click(fn=model.detect_and_align_face,
inputs=[input_image],
outputs=[aligned_face])
aligned_face.change(fn=model.reconstruct_face,
inputs=[aligned_face],
outputs=[reconstructed_face, latent])
editing_type.change(fn=update_step2_components,
inputs=[editing_type],
outputs=[hairstyle_index, color_description])
run_button.click(fn=model.generate,
inputs=[
editing_type,
hairstyle_index,
color_description,
latent,
],
outputs=[result])
example_images.click(fn=set_example_image,
inputs=example_images,
outputs=example_images.components)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|