tweak-mpl-chat / app.py
ahuang11's picture
Update app.py
82795a6
raw
history blame
15.8 kB
from pathlib import Path
import duckdb
import holoviews as hv
import pandas as pd
import panel as pn
from bokeh.models import HoverTool
from langchain.callbacks.base import BaseCallbackHandler
from langchain.chat_models import ChatOpenAI
pn.extension(sizing_mode="stretch_width", notifications=True)
hv.extension("bokeh")
RANDOM_NAME_QUERY = """
SELECT name, count,
CASE
WHEN female_percent >= 0.2 AND female_percent <= 0.8 AND male_percent >= 0.2 AND male_percent <= 0.8 THEN 'unisex'
WHEN female_percent > 0.6 THEN 'female'
WHEN male_percent > 0.6 THEN 'male'
END AS gender
FROM (
SELECT
name,
MAX(male + female) AS count,
(SUM(female) / CAST(SUM(male + female) AS REAL)) AS female_percent,
(SUM(male) / CAST(SUM(male + female) AS REAL)) AS male_percent
FROM names
WHERE name LIKE ?
GROUP BY name
)
WHERE count >= ? AND count <= ?
AND gender = ?
ORDER BY RANDOM()
LIMIT 100
"""
TOP_NAMES_WILDCARD_QUERY = """
SELECT name, SUM(male + female) as count
FROM names
WHERE lower(name) LIKE ?
GROUP BY name
ORDER BY count DESC
LIMIT 10
"""
TOP_NAMES_SELECT_QUERY = """
SELECT name, SUM(male + female) as count
FROM names
WHERE lower(name) = ?
GROUP BY name
ORDER BY count DESC
"""
DATA_QUERY = """
SELECT name, year, male, female, SUM(male + female) AS count
FROM names
WHERE name in ({placeholders})
GROUP BY name, year, male, female
ORDER BY name, year
"""
class StreamHandler(BaseCallbackHandler):
def __init__(self, container, initial_text="", target_attr="value"):
self.container = container
self.text = initial_text
self.target_attr = target_attr
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
setattr(self.container, self.target_attr, self.text)
class NameChronicles:
def __init__(self, refresh=False):
super().__init__()
self.db_path = Path("data/names.db")
self._initialize_database(refresh=refresh)
# Main
self.holoviews_pane = pn.pane.HoloViews(sizing_mode="stretch_both")
self.selection = hv.streams.Selection1D()
# Sidebar
# Name Widgets
self.names_input = pn.widgets.TextInput(name="Name Input", placeholder="Andrew")
self.names_input.param.watch(self._add_name, "value")
self.names_choice = pn.widgets.MultiChoice(
name="Selected Names",
options=["Andrew"],
solid=False,
)
self.names_choice.param.watch(self._update_plot, "value")
self.names_choice.value = ["Andrew"]
# Reset Widgets
self.clear_button = pn.widgets.Button(
name="Clear Names", button_style="outline", button_type="primary"
)
self.clear_button.on_click(
lambda event: setattr(self.names_choice, "value", [])
)
self.refresh_button = pn.widgets.Button(
name="Refresh Plot", button_style="outline", button_type="primary"
)
self.refresh_button.on_click(self._refresh_plot)
# Randomize Widgets
self.name_pattern = pn.widgets.TextInput(
name="Name Pattern", placeholder="*na*"
)
self.count_range = pn.widgets.IntRangeSlider(
name="Peak Count Range",
value=(10000, 50000),
start=0,
end=100000,
step=1000,
margin=(5, 20),
)
self.gender_select = pn.widgets.RadioButtonGroup(
name="Gender",
options=["Female", "Unisex", "Male"],
button_style="outline",
button_type="primary",
)
randomize_name = pn.widgets.Button(
name="Get Name", button_style="outline", button_type="primary"
)
randomize_name.param.watch(self._randomize_name, "clicks")
self.randomize_pane = pn.Card(
self.name_pattern,
self.count_range,
self.gender_select,
randomize_name,
title="Get Random Name",
collapsed=True,
)
# AI Widgets
self.ai_key = pn.widgets.PasswordInput(
name="OpenAI Key",
placeholder="",
)
self.ai_prompt = pn.widgets.TextInput(
name="AI Prompt",
value="Share a little history about the name:",
)
ai_button = pn.widgets.Button(
name="Get Response",
button_style="outline",
button_type="primary",
)
ai_button.on_click(self._prompt_ai)
self.ai_response = pn.widgets.TextAreaInput(
placeholder="",
disabled=True,
height=350,
)
self.ai_pane = pn.Card(
self.ai_key,
self.ai_prompt,
ai_button,
self.ai_response,
collapsed=True,
title="Ask AI",
)
# Database Methods
def _connect_database(self):
"""
Connect to the database.
"""
return duckdb.connect(database=str(self.db_path))
def _initialize_database(self, refresh):
"""
Initialize database with data from the Social Security Administration.
"""
if not refresh and self.db_path.exists():
return
df = pd.concat(
[
pd.read_csv(
path,
header=None,
names=["state", "gender", "year", "name", "count"],
)
for path in Path("data").glob("*.TXT")
]
)
df_processed = (
df.groupby(["gender", "year", "name"], as_index=False)[["count"]]
.sum()
.pivot(index=["name", "year"], columns="gender", values="count")
.reset_index()
.rename(columns={"F": "female", "M": "male"})
.fillna(0)
)
with self._connect_database() as conn:
conn.execute("DROP TABLE IF EXISTS names")
conn.execute("CREATE TABLE names AS SELECT * FROM df_processed")
def _query_names(self, names):
"""
Query the database for the given name.
"""
dfs = []
for name in names:
if "*" in name or "%" in name:
name = name.replace("*", "%")
top_names_query = TOP_NAMES_WILDCARD_QUERY
else:
top_names_query = TOP_NAMES_SELECT_QUERY
with self._connect_database() as conn:
top_names = (
conn.execute(top_names_query, [name.lower()])
.fetch_df()["name"]
.tolist()
)
if len(top_names) == 0:
pn.state.notifications.info(f"No names found matching {name!r}")
continue
data_query = DATA_QUERY.format(
placeholders=", ".join(["?"] * len(top_names))
)
df = conn.execute(data_query, top_names).fetch_df()
dfs.append(df)
if len(dfs) > 0:
self.df = pd.concat(dfs).drop_duplicates(
subset=["name", "year", "male", "female"]
)
else:
self.df = pd.DataFrame(columns=["name", "year", "male", "female"])
# Widget Methods
def _randomize_name(self, event):
with self._connect_database() as conn:
name_pattern = self.name_pattern.value.lower()
if not name_pattern:
name_pattern = "%"
else:
name_pattern = name_pattern.replace("*", "%")
count_range = self.count_range.value
gender_select = self.gender_select.value.lower()
random_names = (
conn.execute(
RANDOM_NAME_QUERY, [name_pattern, *count_range, gender_select]
)
.fetch_df()["name"]
.tolist()
)
if random_names:
for i in range(len(random_names)):
random_name = random_names[i]
if random_name in self.names_choice.value:
continue
self.names_input.value = random_name
break
else:
pn.state.notifications.info(
"All names matching the criteria are already added!"
)
else:
pn.state.notifications.info("No names found matching the criteria!")
def _add_name(self, event):
name = event.new.strip().title()
self.names_input.value = ""
if not name:
return
elif name in self.names_choice.options and name in self.names_choice.value:
pn.state.notifications.info(f"{name!r} already added!")
return
elif len(self.names_choice.value) > 10:
pn.state.notifications.info(
"Maximum of 10 names allowed; please remove some first!"
)
return
value = self.names_choice.value.copy()
options = self.names_choice.options.copy()
if name not in options:
options.append(name)
if name not in value:
value.append(name)
self.names_choice.param.update(
options=options,
value=value,
)
def _prompt_ai(self, event):
if not self.ai_key.value:
pn.state.notifications.info("Please enter an API key!")
return
if not self.ai_prompt.value:
pn.state.notifications.info("Please enter a prompt!")
return
stream_handler = StreamHandler(self.ai_response)
chat = ChatOpenAI(
max_tokens=500,
openai_api_key=self.ai_key.value,
streaming=True,
callbacks=[stream_handler],
)
self.ai_response.loading = True
try:
if self.selection.index:
names = [self._name_indices[self.selection.index[0]]]
else:
names = self.names_choice.value[:3]
chat.predict(f"{self.ai_prompt.value} {names}")
finally:
self.ai_response.loading = False
# Plot Methods
def _click_plot(self, index):
gender_nd_overlay = hv.NdOverlay(kdims=["Gender"])
if not index:
return hv.NdOverlay(
{
"curve": self._curve_nd_overlay,
"scatter": self._scatter_nd_overlay,
"label": self._label_nd_overlay,
}
)
name = self._name_indices[index[0]]
df_name = self.df.loc[self.df["name"] == name].copy()
df_name["female"] += df_name["male"]
gender_nd_overlay["Male"] = hv.Area(
df_name, ["year"], ["male"], label="Male"
).opts(alpha=0.3, color="#add8e6", line_alpha=0)
gender_nd_overlay["Female"] = hv.Area(
df_name, ["year"], ["male", "female"], label="Female"
).opts(alpha=0.3, color="#ffb6c1", line_alpha=0)
return hv.NdOverlay(
{
"curve": self._curve_nd_overlay[[index[0]]],
"scatter": self._scatter_nd_overlay,
"label": self._label_nd_overlay[[index[0]]].opts(text_color="black"),
"gender": gender_nd_overlay,
},
kdims=["Gender"],
).opts(legend_position="top_left")
@staticmethod
def _format_y(value):
return f"{value / 1000}k"
def _update_plot(self, event):
names = event.new
print(names)
self._query_names(names)
self._scatter_nd_overlay = hv.NdOverlay()
self._curve_nd_overlay = hv.NdOverlay(kdims=["Name"]).opts(
gridstyle={"xgrid_line_width": 0},
show_grid=True,
fontscale=1.28,
xlabel="Year",
ylabel="Count",
yformatter=self._format_y,
legend_limit=0,
padding=(0.2, 0.05),
title="Name Chronicles",
responsive=True,
)
self._label_nd_overlay = hv.NdOverlay(kdims=["Name"])
hover_tool = HoverTool(
tooltips=[("Name", "@name"), ("Year", "@year"), ("Count", "@count")],
)
self._name_indices = {}
scatter_cycle = hv.Cycle("Category10")
curve_cycle = hv.Cycle("Category10")
label_cycle = hv.Cycle("Category10")
for i, (name, df_name) in enumerate(self.df.groupby("name")):
df_name_total = df_name.groupby(
["name", "year", "male", "female"], as_index=False
)["count"].sum()
df_name_total["male"] = df_name_total["male"] / df_name_total["count"]
df_name_total["female"] = df_name_total["female"] / df_name_total["count"]
df_name_peak = df_name.loc[[df_name["count"].idxmax()]]
df_name_peak[
"label"
] = f'{df_name_peak["name"].item()} ({df_name_peak["year"].item()})'
hover_tool = HoverTool(
tooltips=[
("Name", "@name"),
("Year", "@year"),
("Count", "@count{(0a)}"),
("Male", "@male{(0%)}"),
("Female", "@female{(0%)}"),
],
)
self._scatter_nd_overlay[i] = hv.Scatter(
df_name_total, ["year"], ["count", "male", "female", "name"], label=name
).opts(
color=scatter_cycle,
size=4,
alpha=0.15,
marker="y",
tools=["tap", hover_tool],
line_width=3,
show_legend=False,
)
self._curve_nd_overlay[i] = hv.Curve(
df_name_total, ["year"], ["count"], label=name
).opts(
color=curve_cycle,
tools=["tap"],
line_width=3,
)
self._label_nd_overlay[i] = hv.Labels(
df_name_peak, ["year", "count"], ["label"], label=name
).opts(
text_align="right",
text_baseline="bottom",
text_color=label_cycle,
)
self._name_indices[i] = name
self.selection.source = self._curve_nd_overlay
if len(self._name_indices) == 1:
self.selection.update(index=[0])
else:
self.selection.update(index=[])
self.dynamic_map = hv.DynamicMap(
self._click_plot, kdims=[], streams=[self.selection]
).opts(responsive=True)
self._refresh_plot()
def _refresh_plot(self, event=None):
self.holoviews_pane.object = self.dynamic_map.clone()
def view(self):
reset_row = pn.Row(self.clear_button, self.refresh_button)
data_url = pn.pane.Markdown(
"<center>Data from the <a href='https://www.ssa.gov/oact/babynames/limits.html' "
"target='_blank'>U.S. Social Security Administration</a></center>",
align="end",
)
sidebar = pn.Column(
self.names_input,
self.names_choice,
reset_row,
pn.layout.Divider(),
self.randomize_pane,
self.ai_pane,
data_url,
)
template = pn.template.FastListTemplate(
sidebar=[sidebar],
main=[self.holoviews_pane],
title="Name Chronicles",
theme="dark",
)
return template
NameChronicles().view().servable()