File size: 15,777 Bytes
09672b1
1e333df
09672b1
 
 
1e333df
09672b1
 
 
1e333df
09672b1
 
1e333df
 
09672b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e333df
09672b1
 
 
 
 
 
 
 
1e333df
09672b1
 
 
 
 
 
 
1e333df
09672b1
 
 
 
 
 
 
1e333df
 
09672b1
 
 
 
 
1e333df
09672b1
 
 
1e333df
09672b1
 
 
 
82795a6
09672b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e333df
09672b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e333df
09672b1
 
 
 
 
 
1e333df
09672b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e333df
09672b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from pathlib import Path

import duckdb
import holoviews as hv
import pandas as pd
import panel as pn
from bokeh.models import HoverTool
from langchain.callbacks.base import BaseCallbackHandler
from langchain.chat_models import ChatOpenAI

pn.extension(sizing_mode="stretch_width", notifications=True)
hv.extension("bokeh")


RANDOM_NAME_QUERY = """
    SELECT name, count, 
        CASE
            WHEN female_percent >= 0.2 AND female_percent <= 0.8 AND male_percent >= 0.2 AND male_percent <= 0.8 THEN 'unisex'
            WHEN female_percent > 0.6 THEN 'female'
            WHEN male_percent > 0.6 THEN 'male'
        END AS gender
    FROM (
        SELECT 
            name,
            MAX(male + female) AS count,
            (SUM(female) / CAST(SUM(male + female) AS REAL)) AS female_percent,
            (SUM(male) / CAST(SUM(male + female) AS REAL)) AS male_percent
        FROM names
        WHERE name LIKE ?
        GROUP BY name
    )
    WHERE count >= ? AND count <= ?
    AND gender = ?
    ORDER BY RANDOM()
    LIMIT 100
"""

TOP_NAMES_WILDCARD_QUERY = """
    SELECT name, SUM(male  + female) as count
    FROM names
    WHERE lower(name) LIKE ?
    GROUP BY name
    ORDER BY count DESC
    LIMIT 10
"""

TOP_NAMES_SELECT_QUERY = """
    SELECT name, SUM(male  + female) as count
    FROM names
    WHERE lower(name) = ?
    GROUP BY name
    ORDER BY count DESC
"""

DATA_QUERY = """
    SELECT name, year, male, female, SUM(male + female) AS count
    FROM names
    WHERE name in ({placeholders})
    GROUP BY name, year, male, female
    ORDER BY name, year
"""


class StreamHandler(BaseCallbackHandler):
    def __init__(self, container, initial_text="", target_attr="value"):
        self.container = container
        self.text = initial_text
        self.target_attr = target_attr

    def on_llm_new_token(self, token: str, **kwargs) -> None:
        self.text += token
        setattr(self.container, self.target_attr, self.text)


class NameChronicles:
    def __init__(self, refresh=False):
        super().__init__()
        self.db_path = Path("data/names.db")
        self._initialize_database(refresh=refresh)

        # Main
        self.holoviews_pane = pn.pane.HoloViews(sizing_mode="stretch_both")
        self.selection = hv.streams.Selection1D()

        # Sidebar

        # Name Widgets
        self.names_input = pn.widgets.TextInput(name="Name Input", placeholder="Andrew")
        self.names_input.param.watch(self._add_name, "value")

        self.names_choice = pn.widgets.MultiChoice(
            name="Selected Names",
            options=["Andrew"],
            solid=False,
        )
        self.names_choice.param.watch(self._update_plot, "value")
        self.names_choice.value = ["Andrew"]

        # Reset Widgets
        self.clear_button = pn.widgets.Button(
            name="Clear Names", button_style="outline", button_type="primary"
        )
        self.clear_button.on_click(
            lambda event: setattr(self.names_choice, "value", [])
        )
        self.refresh_button = pn.widgets.Button(
            name="Refresh Plot", button_style="outline", button_type="primary"
        )
        self.refresh_button.on_click(self._refresh_plot)

        # Randomize Widgets
        self.name_pattern = pn.widgets.TextInput(
            name="Name Pattern", placeholder="*na*"
        )
        self.count_range = pn.widgets.IntRangeSlider(
            name="Peak Count Range",
            value=(10000, 50000),
            start=0,
            end=100000,
            step=1000,
            margin=(5, 20),
        )
        self.gender_select = pn.widgets.RadioButtonGroup(
            name="Gender",
            options=["Female", "Unisex", "Male"],
            button_style="outline",
            button_type="primary",
        )
        randomize_name = pn.widgets.Button(
            name="Get Name", button_style="outline", button_type="primary"
        )
        randomize_name.param.watch(self._randomize_name, "clicks")
        self.randomize_pane = pn.Card(
            self.name_pattern,
            self.count_range,
            self.gender_select,
            randomize_name,
            title="Get Random Name",
            collapsed=True,
        )

        # AI Widgets
        self.ai_key = pn.widgets.PasswordInput(
            name="OpenAI Key",
            placeholder="",
        )
        self.ai_prompt = pn.widgets.TextInput(
            name="AI Prompt",
            value="Share a little history about the name:",
        )
        ai_button = pn.widgets.Button(
            name="Get Response",
            button_style="outline",
            button_type="primary",
        )
        ai_button.on_click(self._prompt_ai)
        self.ai_response = pn.widgets.TextAreaInput(
            placeholder="",
            disabled=True,
            height=350,
        )
        self.ai_pane = pn.Card(
            self.ai_key,
            self.ai_prompt,
            ai_button,
            self.ai_response,
            collapsed=True,
            title="Ask AI",
        )

    # Database Methods

    def _connect_database(self):
        """
        Connect to the database.
        """
        return duckdb.connect(database=str(self.db_path))

    def _initialize_database(self, refresh):
        """
        Initialize database with data from the Social Security Administration.
        """
        if not refresh and self.db_path.exists():
            return

        df = pd.concat(
            [
                pd.read_csv(
                    path,
                    header=None,
                    names=["state", "gender", "year", "name", "count"],
                )
                for path in Path("data").glob("*.TXT")
            ]
        )
        df_processed = (
            df.groupby(["gender", "year", "name"], as_index=False)[["count"]]
            .sum()
            .pivot(index=["name", "year"], columns="gender", values="count")
            .reset_index()
            .rename(columns={"F": "female", "M": "male"})
            .fillna(0)
        )
        with self._connect_database() as conn:
            conn.execute("DROP TABLE IF EXISTS names")
            conn.execute("CREATE TABLE names AS SELECT * FROM df_processed")

    def _query_names(self, names):
        """
        Query the database for the given name.
        """
        dfs = []
        for name in names:
            if "*" in name or "%" in name:
                name = name.replace("*", "%")
                top_names_query = TOP_NAMES_WILDCARD_QUERY
            else:
                top_names_query = TOP_NAMES_SELECT_QUERY
            with self._connect_database() as conn:
                top_names = (
                    conn.execute(top_names_query, [name.lower()])
                    .fetch_df()["name"]
                    .tolist()
                )
                if len(top_names) == 0:
                    pn.state.notifications.info(f"No names found matching {name!r}")
                    continue
                data_query = DATA_QUERY.format(
                    placeholders=", ".join(["?"] * len(top_names))
                )
                df = conn.execute(data_query, top_names).fetch_df()
            dfs.append(df)

        if len(dfs) > 0:
            self.df = pd.concat(dfs).drop_duplicates(
                subset=["name", "year", "male", "female"]
            )
        else:
            self.df = pd.DataFrame(columns=["name", "year", "male", "female"])

    # Widget Methods

    def _randomize_name(self, event):
        with self._connect_database() as conn:
            name_pattern = self.name_pattern.value.lower()
            if not name_pattern:
                name_pattern = "%"
            else:
                name_pattern = name_pattern.replace("*", "%")
            count_range = self.count_range.value
            gender_select = self.gender_select.value.lower()
            random_names = (
                conn.execute(
                    RANDOM_NAME_QUERY, [name_pattern, *count_range, gender_select]
                )
                .fetch_df()["name"]
                .tolist()
            )
        if random_names:
            for i in range(len(random_names)):
                random_name = random_names[i]
                if random_name in self.names_choice.value:
                    continue
                self.names_input.value = random_name
                break
            else:
                pn.state.notifications.info(
                    "All names matching the criteria are already added!"
                )
        else:
            pn.state.notifications.info("No names found matching the criteria!")

    def _add_name(self, event):
        name = event.new.strip().title()
        self.names_input.value = ""
        if not name:
            return
        elif name in self.names_choice.options and name in self.names_choice.value:
            pn.state.notifications.info(f"{name!r} already added!")
            return
        elif len(self.names_choice.value) > 10:
            pn.state.notifications.info(
                "Maximum of 10 names allowed; please remove some first!"
            )
            return
        value = self.names_choice.value.copy()
        options = self.names_choice.options.copy()
        if name not in options:
            options.append(name)
        if name not in value:
            value.append(name)
        self.names_choice.param.update(
            options=options,
            value=value,
        )

    def _prompt_ai(self, event):
        if not self.ai_key.value:
            pn.state.notifications.info("Please enter an API key!")
            return

        if not self.ai_prompt.value:
            pn.state.notifications.info("Please enter a prompt!")
            return

        stream_handler = StreamHandler(self.ai_response)
        chat = ChatOpenAI(
            max_tokens=500,
            openai_api_key=self.ai_key.value,
            streaming=True,
            callbacks=[stream_handler],
        )
        self.ai_response.loading = True
        try:
            if self.selection.index:
                names = [self._name_indices[self.selection.index[0]]]
            else:
                names = self.names_choice.value[:3]
            chat.predict(f"{self.ai_prompt.value} {names}")
        finally:
            self.ai_response.loading = False

    # Plot Methods

    def _click_plot(self, index):
        gender_nd_overlay = hv.NdOverlay(kdims=["Gender"])
        if not index:
            return hv.NdOverlay(
                {
                    "curve": self._curve_nd_overlay,
                    "scatter": self._scatter_nd_overlay,
                    "label": self._label_nd_overlay,
                }
            )

        name = self._name_indices[index[0]]
        df_name = self.df.loc[self.df["name"] == name].copy()
        df_name["female"] += df_name["male"]
        gender_nd_overlay["Male"] = hv.Area(
            df_name, ["year"], ["male"], label="Male"
        ).opts(alpha=0.3, color="#add8e6", line_alpha=0)
        gender_nd_overlay["Female"] = hv.Area(
            df_name, ["year"], ["male", "female"], label="Female"
        ).opts(alpha=0.3, color="#ffb6c1", line_alpha=0)
        return hv.NdOverlay(
            {
                "curve": self._curve_nd_overlay[[index[0]]],
                "scatter": self._scatter_nd_overlay,
                "label": self._label_nd_overlay[[index[0]]].opts(text_color="black"),
                "gender": gender_nd_overlay,
            },
            kdims=["Gender"],
        ).opts(legend_position="top_left")

    @staticmethod
    def _format_y(value):
        return f"{value / 1000}k"

    def _update_plot(self, event):
        names = event.new
        print(names)
        self._query_names(names)

        self._scatter_nd_overlay = hv.NdOverlay()
        self._curve_nd_overlay = hv.NdOverlay(kdims=["Name"]).opts(
            gridstyle={"xgrid_line_width": 0},
            show_grid=True,
            fontscale=1.28,
            xlabel="Year",
            ylabel="Count",
            yformatter=self._format_y,
            legend_limit=0,
            padding=(0.2, 0.05),
            title="Name Chronicles",
            responsive=True,
        )
        self._label_nd_overlay = hv.NdOverlay(kdims=["Name"])
        hover_tool = HoverTool(
            tooltips=[("Name", "@name"), ("Year", "@year"), ("Count", "@count")],
        )
        self._name_indices = {}
        scatter_cycle = hv.Cycle("Category10")
        curve_cycle = hv.Cycle("Category10")
        label_cycle = hv.Cycle("Category10")
        for i, (name, df_name) in enumerate(self.df.groupby("name")):
            df_name_total = df_name.groupby(
                ["name", "year", "male", "female"], as_index=False
            )["count"].sum()
            df_name_total["male"] = df_name_total["male"] / df_name_total["count"]
            df_name_total["female"] = df_name_total["female"] / df_name_total["count"]
            df_name_peak = df_name.loc[[df_name["count"].idxmax()]]
            df_name_peak[
                "label"
            ] = f'{df_name_peak["name"].item()} ({df_name_peak["year"].item()})'

            hover_tool = HoverTool(
                tooltips=[
                    ("Name", "@name"),
                    ("Year", "@year"),
                    ("Count", "@count{(0a)}"),
                    ("Male", "@male{(0%)}"),
                    ("Female", "@female{(0%)}"),
                ],
            )
            self._scatter_nd_overlay[i] = hv.Scatter(
                df_name_total, ["year"], ["count", "male", "female", "name"], label=name
            ).opts(
                color=scatter_cycle,
                size=4,
                alpha=0.15,
                marker="y",
                tools=["tap", hover_tool],
                line_width=3,
                show_legend=False,
            )
            self._curve_nd_overlay[i] = hv.Curve(
                df_name_total, ["year"], ["count"], label=name
            ).opts(
                color=curve_cycle,
                tools=["tap"],
                line_width=3,
            )
            self._label_nd_overlay[i] = hv.Labels(
                df_name_peak, ["year", "count"], ["label"], label=name
            ).opts(
                text_align="right",
                text_baseline="bottom",
                text_color=label_cycle,
            )
            self._name_indices[i] = name
        self.selection.source = self._curve_nd_overlay
        if len(self._name_indices) == 1:
            self.selection.update(index=[0])
        else:
            self.selection.update(index=[])
        self.dynamic_map = hv.DynamicMap(
            self._click_plot, kdims=[], streams=[self.selection]
        ).opts(responsive=True)
        self._refresh_plot()

    def _refresh_plot(self, event=None):
        self.holoviews_pane.object = self.dynamic_map.clone()

    def view(self):
        reset_row = pn.Row(self.clear_button, self.refresh_button)
        data_url = pn.pane.Markdown(
            "<center>Data from the <a href='https://www.ssa.gov/oact/babynames/limits.html' "
            "target='_blank'>U.S. Social Security Administration</a></center>",
            align="end",
        )
        sidebar = pn.Column(
            self.names_input,
            self.names_choice,
            reset_row,
            pn.layout.Divider(),
            self.randomize_pane,
            self.ai_pane,
            data_url,
        )
        template = pn.template.FastListTemplate(
            sidebar=[sidebar],
            main=[self.holoviews_pane],
            title="Name Chronicles",
            theme="dark",
        )
        return template


NameChronicles().view().servable()