|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import cv2 |
|
import onnx |
|
import onnxruntime |
|
import face_align |
|
|
|
__all__ = [ |
|
'ArcFaceONNX', |
|
] |
|
|
|
|
|
class ArcFaceONNX: |
|
def __init__(self, model_file=None, session=None): |
|
assert model_file is not None |
|
self.model_file = model_file |
|
self.session = session |
|
self.taskname = 'recognition' |
|
find_sub = False |
|
find_mul = False |
|
model = onnx.load(self.model_file) |
|
graph = model.graph |
|
for nid, node in enumerate(graph.node[:8]): |
|
|
|
if node.name.startswith('Sub') or node.name.startswith('_minus'): |
|
find_sub = True |
|
if node.name.startswith('Mul') or node.name.startswith('_mul'): |
|
find_mul = True |
|
if find_sub and find_mul: |
|
|
|
input_mean = 0.0 |
|
input_std = 1.0 |
|
else: |
|
input_mean = 127.5 |
|
input_std = 127.5 |
|
self.input_mean = input_mean |
|
self.input_std = input_std |
|
|
|
if self.session is None: |
|
self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider']) |
|
input_cfg = self.session.get_inputs()[0] |
|
input_shape = input_cfg.shape |
|
input_name = input_cfg.name |
|
self.input_size = tuple(input_shape[2:4][::-1]) |
|
self.input_shape = input_shape |
|
outputs = self.session.get_outputs() |
|
output_names = [] |
|
for out in outputs: |
|
output_names.append(out.name) |
|
self.input_name = input_name |
|
self.output_names = output_names |
|
assert len(self.output_names)==1 |
|
self.output_shape = outputs[0].shape |
|
|
|
def prepare(self, ctx_id, **kwargs): |
|
if ctx_id<0: |
|
self.session.set_providers(['CPUExecutionProvider']) |
|
|
|
def get(self, img, kps): |
|
aimg = face_align.norm_crop(img, landmark=kps, image_size=self.input_size[0]) |
|
embedding = self.get_feat(aimg).flatten() |
|
return embedding |
|
|
|
def compute_sim(self, feat1, feat2): |
|
from numpy.linalg import norm |
|
feat1 = feat1.ravel() |
|
feat2 = feat2.ravel() |
|
sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2)) |
|
return sim |
|
|
|
def get_feat(self, imgs): |
|
if not isinstance(imgs, list): |
|
imgs = [imgs] |
|
input_size = self.input_size |
|
|
|
blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size, |
|
(self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
net_out = self.session.run(self.output_names, {self.input_name: blob})[0] |
|
return net_out |
|
|
|
def forward(self, batch_data): |
|
blob = (batch_data - self.input_mean) / self.input_std |
|
net_out = self.session.run(self.output_names, {self.input_name: blob})[0] |
|
return net_out |
|
|
|
|
|
|