|
|
|
from __future__ import division |
|
import datetime |
|
import numpy as np |
|
|
|
import onnxruntime |
|
import os |
|
import os.path as osp |
|
import cv2 |
|
import sys |
|
|
|
def softmax(z): |
|
assert len(z.shape) == 2 |
|
s = np.max(z, axis=1) |
|
s = s[:, np.newaxis] |
|
e_x = np.exp(z - s) |
|
div = np.sum(e_x, axis=1) |
|
div = div[:, np.newaxis] |
|
return e_x / div |
|
|
|
def distance2bbox(points, distance, max_shape=None): |
|
"""Decode distance prediction to bounding box. |
|
|
|
Args: |
|
points (Tensor): Shape (n, 2), [x, y]. |
|
distance (Tensor): Distance from the given point to 4 |
|
boundaries (left, top, right, bottom). |
|
max_shape (tuple): Shape of the image. |
|
|
|
Returns: |
|
Tensor: Decoded bboxes. |
|
""" |
|
x1 = points[:, 0] - distance[:, 0] |
|
y1 = points[:, 1] - distance[:, 1] |
|
x2 = points[:, 0] + distance[:, 2] |
|
y2 = points[:, 1] + distance[:, 3] |
|
if max_shape is not None: |
|
x1 = x1.clamp(min=0, max=max_shape[1]) |
|
y1 = y1.clamp(min=0, max=max_shape[0]) |
|
x2 = x2.clamp(min=0, max=max_shape[1]) |
|
y2 = y2.clamp(min=0, max=max_shape[0]) |
|
return np.stack([x1, y1, x2, y2], axis=-1) |
|
|
|
def distance2kps(points, distance, max_shape=None): |
|
"""Decode distance prediction to bounding box. |
|
|
|
Args: |
|
points (Tensor): Shape (n, 2), [x, y]. |
|
distance (Tensor): Distance from the given point to 4 |
|
boundaries (left, top, right, bottom). |
|
max_shape (tuple): Shape of the image. |
|
|
|
Returns: |
|
Tensor: Decoded bboxes. |
|
""" |
|
preds = [] |
|
for i in range(0, distance.shape[1], 2): |
|
px = points[:, i%2] + distance[:, i] |
|
py = points[:, i%2+1] + distance[:, i+1] |
|
if max_shape is not None: |
|
px = px.clamp(min=0, max=max_shape[1]) |
|
py = py.clamp(min=0, max=max_shape[0]) |
|
preds.append(px) |
|
preds.append(py) |
|
return np.stack(preds, axis=-1) |
|
|
|
class SCRFD: |
|
def __init__(self, model_file=None, session=None): |
|
import onnxruntime |
|
self.model_file = model_file |
|
self.session = session |
|
self.taskname = 'detection' |
|
self.batched = False |
|
if self.session is None: |
|
assert self.model_file is not None |
|
assert osp.exists(self.model_file) |
|
self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider']) |
|
self.center_cache = {} |
|
self.nms_thresh = 0.4 |
|
self.det_thresh = 0.5 |
|
self._init_vars() |
|
|
|
def _init_vars(self): |
|
input_cfg = self.session.get_inputs()[0] |
|
input_shape = input_cfg.shape |
|
|
|
if isinstance(input_shape[2], str): |
|
self.input_size = None |
|
else: |
|
self.input_size = tuple(input_shape[2:4][::-1]) |
|
|
|
input_name = input_cfg.name |
|
self.input_shape = input_shape |
|
outputs = self.session.get_outputs() |
|
if len(outputs[0].shape) == 3: |
|
self.batched = True |
|
output_names = [] |
|
for o in outputs: |
|
output_names.append(o.name) |
|
self.input_name = input_name |
|
self.output_names = output_names |
|
self.input_mean = 127.5 |
|
self.input_std = 128.0 |
|
|
|
|
|
self.use_kps = False |
|
self._anchor_ratio = 1.0 |
|
self._num_anchors = 1 |
|
if len(outputs)==6: |
|
self.fmc = 3 |
|
self._feat_stride_fpn = [8, 16, 32] |
|
self._num_anchors = 2 |
|
elif len(outputs)==9: |
|
self.fmc = 3 |
|
self._feat_stride_fpn = [8, 16, 32] |
|
self._num_anchors = 2 |
|
self.use_kps = True |
|
elif len(outputs)==10: |
|
self.fmc = 5 |
|
self._feat_stride_fpn = [8, 16, 32, 64, 128] |
|
self._num_anchors = 1 |
|
elif len(outputs)==15: |
|
self.fmc = 5 |
|
self._feat_stride_fpn = [8, 16, 32, 64, 128] |
|
self._num_anchors = 1 |
|
self.use_kps = True |
|
|
|
def prepare(self, ctx_id, **kwargs): |
|
if ctx_id<0: |
|
self.session.set_providers(['CPUExecutionProvider']) |
|
nms_thresh = kwargs.get('nms_thresh', None) |
|
if nms_thresh is not None: |
|
self.nms_thresh = nms_thresh |
|
det_thresh = kwargs.get('det_thresh', None) |
|
if det_thresh is not None: |
|
self.det_thresh = det_thresh |
|
input_size = kwargs.get('input_size', None) |
|
if input_size is not None: |
|
if self.input_size is not None: |
|
print('warning: det_size is already set in scrfd model, ignore') |
|
else: |
|
self.input_size = input_size |
|
|
|
def forward(self, img, threshold): |
|
scores_list = [] |
|
bboxes_list = [] |
|
kpss_list = [] |
|
input_size = tuple(img.shape[0:2][::-1]) |
|
blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
net_outs = self.session.run(self.output_names, {self.input_name : blob}) |
|
|
|
input_height = blob.shape[2] |
|
input_width = blob.shape[3] |
|
fmc = self.fmc |
|
for idx, stride in enumerate(self._feat_stride_fpn): |
|
|
|
if self.batched: |
|
scores = net_outs[idx][0] |
|
bbox_preds = net_outs[idx + fmc][0] |
|
bbox_preds = bbox_preds * stride |
|
if self.use_kps: |
|
kps_preds = net_outs[idx + fmc * 2][0] * stride |
|
|
|
else: |
|
scores = net_outs[idx] |
|
bbox_preds = net_outs[idx + fmc] |
|
bbox_preds = bbox_preds * stride |
|
if self.use_kps: |
|
kps_preds = net_outs[idx + fmc * 2] * stride |
|
|
|
height = input_height // stride |
|
width = input_width // stride |
|
K = height * width |
|
key = (height, width, stride) |
|
if key in self.center_cache: |
|
anchor_centers = self.center_cache[key] |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) |
|
|
|
|
|
anchor_centers = (anchor_centers * stride).reshape( (-1, 2) ) |
|
if self._num_anchors>1: |
|
anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) ) |
|
if len(self.center_cache)<100: |
|
self.center_cache[key] = anchor_centers |
|
|
|
pos_inds = np.where(scores>=threshold)[0] |
|
bboxes = distance2bbox(anchor_centers, bbox_preds) |
|
pos_scores = scores[pos_inds] |
|
pos_bboxes = bboxes[pos_inds] |
|
scores_list.append(pos_scores) |
|
bboxes_list.append(pos_bboxes) |
|
if self.use_kps: |
|
kpss = distance2kps(anchor_centers, kps_preds) |
|
|
|
kpss = kpss.reshape( (kpss.shape[0], -1, 2) ) |
|
pos_kpss = kpss[pos_inds] |
|
kpss_list.append(pos_kpss) |
|
return scores_list, bboxes_list, kpss_list |
|
|
|
def detect(self, img, input_size = None, thresh=None, max_num=0, metric='default'): |
|
assert input_size is not None or self.input_size is not None |
|
input_size = self.input_size if input_size is None else input_size |
|
|
|
im_ratio = float(img.shape[0]) / img.shape[1] |
|
model_ratio = float(input_size[1]) / input_size[0] |
|
if im_ratio>model_ratio: |
|
new_height = input_size[1] |
|
new_width = int(new_height / im_ratio) |
|
else: |
|
new_width = input_size[0] |
|
new_height = int(new_width * im_ratio) |
|
det_scale = float(new_height) / img.shape[0] |
|
resized_img = cv2.resize(img, (new_width, new_height)) |
|
det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 ) |
|
det_img[:new_height, :new_width, :] = resized_img |
|
det_thresh = thresh if thresh is not None else self.det_thresh |
|
|
|
scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh) |
|
|
|
scores = np.vstack(scores_list) |
|
scores_ravel = scores.ravel() |
|
order = scores_ravel.argsort()[::-1] |
|
bboxes = np.vstack(bboxes_list) / det_scale |
|
if self.use_kps: |
|
kpss = np.vstack(kpss_list) / det_scale |
|
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) |
|
pre_det = pre_det[order, :] |
|
keep = self.nms(pre_det) |
|
det = pre_det[keep, :] |
|
if self.use_kps: |
|
kpss = kpss[order,:,:] |
|
kpss = kpss[keep,:,:] |
|
else: |
|
kpss = None |
|
if max_num > 0 and det.shape[0] > max_num: |
|
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - |
|
det[:, 1]) |
|
img_center = img.shape[0] // 2, img.shape[1] // 2 |
|
offsets = np.vstack([ |
|
(det[:, 0] + det[:, 2]) / 2 - img_center[1], |
|
(det[:, 1] + det[:, 3]) / 2 - img_center[0] |
|
]) |
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) |
|
if metric=='max': |
|
values = area |
|
else: |
|
values = area - offset_dist_squared * 2.0 |
|
bindex = np.argsort( |
|
values)[::-1] |
|
bindex = bindex[0:max_num] |
|
det = det[bindex, :] |
|
if kpss is not None: |
|
kpss = kpss[bindex, :] |
|
return det, kpss |
|
|
|
def autodetect(self, img, max_num=0, metric='max'): |
|
bboxes, kpss = self.detect(img, input_size=(640, 640), thresh=0.5) |
|
bboxes2, kpss2 = self.detect(img, input_size=(128, 128), thresh=0.5) |
|
bboxes_all = np.concatenate([bboxes, bboxes2], axis=0) |
|
kpss_all = np.concatenate([kpss, kpss2], axis=0) |
|
keep = self.nms(bboxes_all) |
|
det = bboxes_all[keep,:] |
|
kpss = kpss_all[keep,:] |
|
if max_num > 0 and det.shape[0] > max_num: |
|
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - |
|
det[:, 1]) |
|
img_center = img.shape[0] // 2, img.shape[1] // 2 |
|
offsets = np.vstack([ |
|
(det[:, 0] + det[:, 2]) / 2 - img_center[1], |
|
(det[:, 1] + det[:, 3]) / 2 - img_center[0] |
|
]) |
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) |
|
if metric=='max': |
|
values = area |
|
else: |
|
values = area - offset_dist_squared * 2.0 |
|
bindex = np.argsort( |
|
values)[::-1] |
|
bindex = bindex[0:max_num] |
|
det = det[bindex, :] |
|
if kpss is not None: |
|
kpss = kpss[bindex, :] |
|
return det, kpss |
|
|
|
def nms(self, dets): |
|
thresh = self.nms_thresh |
|
x1 = dets[:, 0] |
|
y1 = dets[:, 1] |
|
x2 = dets[:, 2] |
|
y2 = dets[:, 3] |
|
scores = dets[:, 4] |
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
order = scores.argsort()[::-1] |
|
|
|
keep = [] |
|
while order.size > 0: |
|
i = order[0] |
|
keep.append(i) |
|
xx1 = np.maximum(x1[i], x1[order[1:]]) |
|
yy1 = np.maximum(y1[i], y1[order[1:]]) |
|
xx2 = np.minimum(x2[i], x2[order[1:]]) |
|
yy2 = np.minimum(y2[i], y2[order[1:]]) |
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1) |
|
h = np.maximum(0.0, yy2 - yy1 + 1) |
|
inter = w * h |
|
ovr = inter / (areas[i] + areas[order[1:]] - inter) |
|
|
|
inds = np.where(ovr <= thresh)[0] |
|
order = order[inds + 1] |
|
|
|
return keep |
|
|
|
|